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Variational Inference
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Z
plzlx) » A probabilistic model is usually a joint pdf of the form p(x, y) where

KL(q(z;v*) || p(z|x)) X,y refer to hidden and visible variables respectively.
* Inference about x given y, p(x|y) = pey) _ _ pOy)  pe
) [, pxydx
denominator of this posterior is an intractable
integration/summation in many interesting due to curse of
dimensionality and useful cases and so we resort to approximate
inference.

e Converts this inference into optimization problem. Similar to the idea

of subspace projection for eg. Finding a Linear model given data.
The running theme would be to: /  We choose a distribution from a family of distributions g (z; v) with

some desired properties (for eg. Exponential family, conjugate priors,

Assume a family of distributions with nice fully factorable joint distributions etc.).

properties and make them fit the  Then find the optimal variational parameters v that minimize the KL
distribution of real data by minimizing KL divergence (a distance metric indicating how similar 2 pdfs are)
Divergence. between the true and assumed distributions.

KL + ELBO = Inp(y) = constant given y
Due to this, min(KL) = max(ELBO) and ELBO has p(x, y) instead of
the intractable p(x|y)



= {x,}_,,and datay = {y,}2_,, .
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p(9,z,y) H (Zn|0)P(Yn|2n, 0), PO Always true
where p(0) is the natural exponential family conjugate prior ¥ P
to the exponential family p(z,,, v, |6), Conditionally conjugate b @—’@
models N
Inp(0) = (ne,te(0)) —In Zs(1e) (2)
(2, Ynl0) = Nay(0), tay(@n, yn)) — In Zyy (12 (6)) t,, denotes sufficient Figure 2. Prototypical graphical model for SVI.
= (to(0), (tzy(Tn,yYn), 1)). G (3) statistic. Prop B.4 pg 15, V5.

== This part assumes that
Figure 2 shows the graphical model. The mean field  TRUE distributions also

variational inference problem is to approximate the pos-  helong to exp. family.
terior p(f,x|y) with a tractable distribution ¢(6,x)
by finding a local minimum of the KL divergence
KL(q(0,x)||p(0, x| y)) or, equivalently, using the identity

The mean field objective on the global variational param-
eters 1)y, optimizing out the local variational factors g(z),
can then be written
Separable maximization:

An advantage of mean (779) max E;(g)q(x) [ln
field assumption. q(z)

p(0,z,y)

(3(>}<1‘”’” ©

p(0,z,y i jecti
In p(y) = KL(q(0, 2)||p(0, = | y)) + Eqo m)[ln ( ; )] ’ ?md the natural gradient of the obqectlve (.6). decomposes
q(0,x) A curvature into a sum of local expected sufficient statistics (Hoffman
to choose ¢(6, x) to maximize the objective Same as before  corrected etal, 2013):
version of N
0,x, dient. Ref = ~ -

Llg6,2)] = Eqo,2) [ln %] <Inp(y). ) o 18, vo b Vi L (70) = 1+ D B (b (), 1) =70, ()

ELBO ’ Section C.2 "
Consider the mean field family ¢(6)q(z) = q(0) [],, ¢(7n). € —m—m—— where ¢*(z,,) is a locally optimal local mean field factor
Because of the conjugate exponential family structure, the Idea 1: Fully factorable given 7j9. Thus we can compute a stochastic natural gradi-
optimal global mean field factor ¢(f) is in the same family mean-field family. Helps ent update for our global mean field objective by sampling
as the prior p(6), separate maximization OvVer 5 qata minibatch v,,, optimizing the local mean field factor
Refer to Pg 15, - - arguments. q(x,,), and computing scaled expected sufficient statistics.

V5 e 111G (0) = (110, 19(6)) — In Zy (7). (5)



AN Section 2.3 Image from Ref [3]

@ N N _ Content from Ref [2]
(a) VAE generative model. (b) VAE variational family. a) Achieved by decoder

b) Achieved by encoder N P E G TE TR
Figure 3. Graphical models for the variational autoencoder. | KLV (u(X), (X ))H-: (0, 1] De(clo);ier
N /4
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Zn SN(0,I), n=12,....N (8

Yn | Ty, 0 NN(M(In;ﬂ)aZ(:’?n;ﬁ)) 9)
(p(xp; ), X(xy;09)) = MLP(x,;9). (14)
Encoder lSampIe' from N(0. 1)
To approximate the posterior p(1, z | y), the variational au- (@
toencoder uses the mean field family Another tractable family. ) e fl|f . . "
N Extension of Mean-field can ‘ c Compute m cC OS.C orm. . (0] Compute stoc .aSth
q(9)q(z |y) = q() H (2 | yn). Aﬂ‘ls)’ assumption to induce gradients of the expectation term, since a random variable
n=1 correlation as much as Tpn ~ q(x, | yn) can be parameterized as
A key insight of the variational autoencoder is to use a con- possible. A 1
ditional variational density ¢(x,, |y, ), where the param- _ Tn = g(p,€) = Hq (Yn; @) + Eq(yn; P)ze, €~ N(Oa I),
eters of the variational distribution on x,, depend on the Idea 2: Amortized _ _ _
the mean and covariance parameters of ¢(z,, |y,) to be Idea 3: Reparameterization and its gradient approximated via Monte Carlo over e,

1(yn: @) and X(y,: ¢), respectively, where trick to make the objective

N
(M(yn; (rb)s Z(yn; (P)) = I\ILP(y”,(j)) (16) differentiable with reSpeCt vﬂ*,(]ﬁlEq lnp(y | T, ’19*) ~ Z Vﬂ*,¢ lnp(yn I g(¢, gn), 19*)
to Xn — n=1
Idea 4: Switching order of —
Encccj)dleror Recognition gradient and expectation. where ¢, (0,1). Because g(¢,¢€) is a differentiable
Model. . function of ¢, these gradients can be computed using stan-
L(0*,¢) =Eyyynply|z,9%) = KL(g(z | y) || p()). " — o dard backpropagation. For scalability, the sum over data
Simplified Objective points is also approximated via Monte Carlo. General non-

Function.



Switching Linear Dynamical Systems
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(a) SLDS generative model with nonlinear observation

model parameterized by 9.

tentials {¢(z, ,yfn)vd’) =1

(b) Structured CRF variational family with node po-

(n), parameterized by ¢.

Figure 4. Graphical models for the SLDS generative model and corresponding structured CRF variational family.

id

Tt ZA(Zt).'L't-i-B(Zt)’ut, ’utNN(O,I),

where A%) Bk) ¢ RMXM for | = 1,2, ..., K. The dis-
crete latent state z; evolves according to Markov dynamics,

(17)

zt+1|zt,7r~7r(z‘) (18)
21 | Tinit ~ Tinit, (19)
1| 21, iy Siie ~ N (i) Zit)). - 20)
0 = (m,mnii, {(A®), BO il SENHE ).
Yt | 2o, 0 ~ N(u(xg;9), (243 9)). (21)
(p(xe; ), B(xy;09)) = MLP (243 9). (23)

Notice that the conditional
Y(x_t |y_t,¢) is written in
information form to allow
for relationships between
parameters of conditionals
and conditioning rv's to be
simple

q(0,9, z1.7, x1:7) = q(0)q(P)q(z21:7)q(21:7).  (26)
To leverage bottom-up inference networks, we parameter-
ize the factor ¢(z1.7) as a conditional random field (CRF)
(Murphy, 2012). That is, using the fact that the optimal fac-
tor ¢(x1.7) is Markov according to a chain graph, we write

it terms of pairwise potentials and node potentials as

T-1 T
(1(-’171:T) X (H ’ll)(-’lft,il?t-l-l)) (H"/)(fﬁti,yt#b)) (27)
t=1 t=1

1
U(xe; Y, @) o exp {—gfﬂ;rt](yt;@iﬂt + h(y:: Cf))Tﬂ?t} ;
(h(ye; @), J (ye; ¢)) = MLP (y; ), (28)



Workflow
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Section 4

Algorithm 1 Computing gradients of the SVAE objective

Input: Variational dynamics parameter 79 of ¢(6), obser-
vation model parameter ¥, recognition network param-
eters ¢, sampled sequence (™)
function SVAEGRADIENTS (7, U*, ¢, y™))

Y < RECOGNIZE(y(™), ¢)

(2")(¢), 1%, KL(¢)) - INFERENCE(7jg, V)
Vi £ g + N(I%), 1) — iy
Vir oL Voo [NInp(y™|2(¢),9*) — KL(6)]
returnnatural gradient 6,705, gradient V. , L
end function
The SVAE algorithm computes a natural gradient with re-
spect to 17y and standard gradients with respect to * and ¢.
To compute these gradients, as in Section 2.2 we split the
objective L(7, V%, ¢) as

IEq(a:) hlp(y | €T, 29*) o KL(Q(Q, Z, .’13) || p(oa 2, .’ZL')) (31)

(@) = g(e, €) 2 T Hd)h(d) + J(¢) Ze  (34)

Content from Ref [2]

Algorithm 2 Model inference subroutine for the SLDS

Input: Variational dynamics parameter 7y of ¢(6), node
potentials {¢)(x;;y;)}_, from recognition network
function INFERENCE(7g, {¢(z¢;y:) 1)

Initialize factor ¢(x)
repeat

q(z) o< exp{Eq(0)q(a)Inp(z,2|0)}

q(z) o< exp{Eq@g)q(z)Inp(x|2,0)} [[; Y(z1;y:)
until ¢(z) and ¢(x) converge
T < sample ¢(x)
bow IEq(Z)q(.I‘)tZ.”L‘(Z’ T)
KL « KL(q(0) || p(6))

+NE, ) KL(q(2)q(2) || p(z, 2 0))
returnsample z, expected stats ¢ .., divergence KL
end function

N
Vﬁeﬁ =N+ Z Eq(z)q(m) (tzm (z(n), x(n)), 1) —19 (32)

n=1

where ¢(z) and g(z) are taken to be locally optimal local

Idea 3: Reparameterization ~ mean field factors as in Eq. (7). Therefore by sampling the

where € ~ N(O, I), h(¢) e RT™™  and ,](qb) c RTMxTM trick to make the objective sequence index n uniformly at random, an unbiased esti-

The matrix J(¢) is a block tridiagonal matrix correspond-
ing to the Gaussian LDS of (27), the block diagonal of to Xn
which depends on ¢. Since g(¢,¢) is differentiable with

differentiable with respect ~ mate of the natural gradient is given by

~

vﬁeﬁ R Mg+ NlEq(z)q(m) (tzm(z(n)ax(n))a 1) - ?79' (33)
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