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Variational Inference
A	probabilistic	model	is	usually	a	joint	pdf	of	the	form	𝑝(𝑥, 𝑦) where	
𝑥, 𝑦 refer	to	hidden	and	visible	variables	respectively.
• Inference	about	𝑥 given	𝑦,	𝑝 𝑥 𝑦 = ( ),*
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.	The	

denominator	of	this	posterior	is	an	intractable	
integration/summation	in	many	interesting	due	to	curse	of	
dimensionality	and	useful	cases	and	so	we	resort	to	approximate	
inference.

• Converts	this	inference	into	optimization	problem.	Similar	to	the	idea	
of	subspace	projection	for	eg.	Finding	a	Linear	model	given	data.

• We	choose	a	distribution	from	a	family	of	distributions	𝑞(𝑧; 𝜈) with	
some	desired	properties	(for	eg.	Exponential	family,	conjugate	priors,	
fully	factorable	joint	distributions	etc.).

• Then	find	the	optimal	variational parameters	𝜈 that	minimize	the	KL	
divergence	(a	distance	metric	indicating	how	similar	2	pdfs	are)	
between	the	true	and	assumed	distributions.

𝐾𝐿 + 𝐸𝐿𝐵𝑂 = ln 𝑝 𝑦 = constant	given	𝑦
Due	to	this,	min(KL) ≡ max	(𝐸𝐿𝐵𝑂) and	ELBO	has	𝑝(𝑥, 𝑦) instead	of	
the	intractable	𝑝 𝑥 𝑦

Image	from	Ref	[1]

The	running	theme	would	be	to:

Assume	a	family	of	distributions	with	nice	
properties	and	make	them	fit	the	
distribution	of	real	data	by	minimizing	KL	
Divergence.



Always	true

𝑡)* denotes	sufficient	
statistic.	Prop	B.4	pg 15,	v5.	
This	part	assumes	that	
TRUE	distributions	also	
belong	to	exp.	family.

Conditionally	conjugate	
models

ELBO

Idea	1:	Fully	factorable	
mean-field	family.	Helps		
separate	maximization	over	
arguments.

Same	as	before

Refer	to	Pg 15,	
v5

A	curvature	
corrected	
version	of	
gradient.	Refer	
to	Pg 18,	v5,	
Section	C.2

Section	2.2 Content	from	Ref	[2]

Separable	maximization:	
An	advantage	of	mean	
field	assumption.



Image	from	Ref	[3]

Simplified	Objective	
Function.

Encoder	or	Recognition	
Model.

Idea	2:	Amortized	
Inference.	

Another	tractable	family.	
Extension		of	Mean-field	
assumption to	induce	
correlation	as	much	as	
possible.

a) Achieved	by	decoder
b) Achieved	by	encoder

Idea	3:	Reparameterization
trick	to	make	the	objective	
differentiable	with	respect	
to	𝑥C

Section	2.3
Content	from	Ref	[2]

Idea	4:	Switching	order	of	
gradient	and	expectation.
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Section	3 Content	from	Ref	[2]

Notice	that	the	conditional	
𝜓(𝑥_𝑡 |𝑦_𝑡,𝜙)	is	written	in	
information	form	to	allow	
for	relationships	between	
parameters	of	conditionals	
and	conditioning	rv's to	be	
simple



Workflow



Section	4 Content	from	Ref	[2]

Idea	3:	Reparameterization
trick	to	make	the	objective	
differentiable	with	respect	
to	𝑥C
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