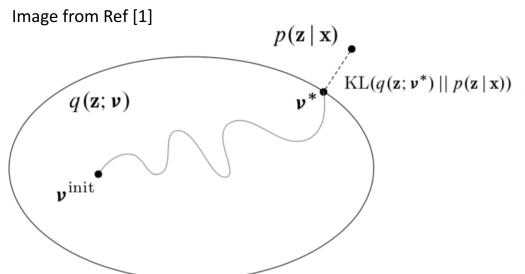
Composing graphical models with neural networks for structured representations and fast inference

A Presentation by Tushar Agarwal

Variational Inference



The running theme would be to:

Assume a family of distributions with nice properties and make them fit the distribution of real data by minimizing KL Divergence.

A probabilistic model is usually a joint pdf of the form p(x, y) where $\mathrm{KL}(q(\mathbf{z}; \mathbf{v}^*) || p(\mathbf{z}|\mathbf{x}))$ x, y refer to hidden and visible variables respectively.

- Inference about x given y, $p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(x,y)}{\int_{x}^{} p(x,y)dx}$. The denominator of this posterior is an intractable integration/summation in many interesting due to curse of dimensionality and useful cases and so we resort to approximate inference.
- Converts this inference into optimization problem. Similar to the idea of subspace projection for eg. Finding a Linear model given data.
- We choose a distribution from a family of distributions q(z; v) with some desired properties (for eg. Exponential family, conjugate priors, fully factorable joint distributions etc.).
- Then find the optimal variational parameters ν that minimize the KL divergence (a distance metric indicating how similar 2 pdfs are) between the true and assumed distributions.

$$KL + ELBO = \ln p(y) = \text{constant given } y$$

Due to this, $min(KL) \equiv max(ELBO)$ and ELBO has p(x,y) instead of the intractable p(x|y)

$$x = \{x_n\}_{n=1}^N$$
, and data $y = \{y_n\}_{n=1}^N$,

$$p(\theta, x, y) = p(\theta) \prod_{n=1}^{N} p(x_n | \theta) p(y_n | x_n, \theta),$$
 (1) Always true

where $p(\theta)$ is the natural exponential family conjugate prior to the exponential family $p(x_n, y_n | \theta)$,

$$\ln p(\theta) = \langle \eta_{\theta}, t_{\theta}(\theta) \rangle - \ln Z_{\theta}(\eta_{\theta}) \tag{2}$$

$$\ln p(x_n, y_n | \theta) = \langle \eta_{xy}(\theta), t_{xy}(x_n, y_n) \rangle - \ln Z_{xy}(\eta_{xy}(\theta))$$
$$= \langle t_{\theta}(\theta), (t_{xy}(x_n, y_n), 1) \rangle. \tag{3}$$

Figure 2 shows the graphical model. The mean field variational inference problem is to approximate the posterior $p(\theta, x | y)$ with a tractable distribution $q(\theta, x)$ by finding a local minimum of the KL divergence $KL(q(\theta, x) || p(\theta, x | y))$ or, equivalently, using the identity

$$\ln p(y) = \mathrm{KL}(q(\theta, x) \| p(\theta, x \mid y)) + \mathbb{E}_{q(\theta, x)} \left[\ln \frac{p(\theta, x, y)}{q(\theta, x)} \right],$$

to choose $q(\theta, x)$ to maximize the objective

$$\mathcal{L}[q(\theta, x)] \triangleq \mathbb{E}_{q(\theta, x)} \left[\ln \frac{p(\theta, x, y)}{q(\theta, x)} \right] \le \ln p(y). \quad (4)$$

Consider the mean field family $q(\theta)q(x) = q(\theta) \prod_n q(x_n)$. Because of the conjugate exponential family structure, the optimal global mean field factor $q(\theta)$ is in the same family as the prior $p(\theta)$,

Refer to Pg 15, v5 $\ln q(\theta) = \langle \widetilde{\eta}_{\theta}, t_{\theta}(\theta) \rangle - \ln Z_{\theta}(\widetilde{\eta}_{\theta}).$ (5)

Section 2.2

Content from Ref [2]

Conditionally conjugate models

Figure 2. Prototypical graphical model for SVI.

 t_{xy} denotes sufficient statistic. Prop B.4 pg 15, v5. This part assumes that TRUE distributions also belong to exp. family.

> Separable maximization: An advantage of mean field assumption.

> > A curvature corrected version of gradient. Refer to Pg 18, v5, Section C.2

Idea 1: Fully factorable mean-field family. Helps separate maximization over arguments.

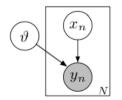
The mean field objective on the global variational parameters $\widetilde{\eta}_{\theta}$, optimizing out the local variational factors q(x), can then be written

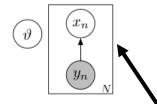
$$\mathcal{L}(\widetilde{\eta}_{\theta}) \triangleq \max_{q(x)} \mathbb{E}_{q(\theta)q(x)} \left[\ln \frac{p(\theta, x, y)}{q(\theta)q(x)} \right] \leq \ln p(y) \quad (6)$$

and the natural gradient of the objective (6) decomposes into a sum of local expected sufficient statistics (Hoffman et al., 2013):

$$\widetilde{\nabla}_{\widetilde{\eta}_{\theta}} \mathcal{L}(\widetilde{\eta}_{\theta}) = \eta_{\theta} + \sum_{n=1}^{N} \mathbb{E}_{q^{*}(x_{n})}(t_{xy}(x_{n}, y_{n}), 1) - \widetilde{\eta}_{\theta}, (7)$$

where $q^*(x_n)$ is a locally optimal local mean field factor given $\widetilde{\eta}_{\theta}$. Thus we can compute a stochastic natural gradient update for our global mean field objective by sampling a data minibatch y_n , optimizing the local mean field factor $q(x_n)$, and computing scaled expected sufficient statistics.





- (a) VAE generative model.
- (b) VAE variational family.

Figure 3. Graphical models for the variational autoencoder.

$$x_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I), \quad n = 1, 2, \dots, N$$
 (8)

$$y_n \mid x_n, \vartheta \sim \mathcal{N}(\mu(x_n; \vartheta), \Sigma(x_n; \vartheta))$$
 (9)

$$(\mu(x_n; \vartheta), \Sigma(x_n; \vartheta)) = MLP(x_n; \vartheta).$$
 (14)

To approximate the posterior $p(\vartheta, x \mid y)$, the variational autoencoder uses the mean field family

$$q(\vartheta)q(x \mid y) = q(\vartheta) \prod_{n=1}^{N} q(x_n \mid y_n). \blacktriangleleft (15)$$

A key insight of the variational autoencoder is to use a conditional variational density $q(x_n \mid y_n)$, where the parameters of the variational distribution on x_n depend on the corresponding data point y_n . In particular, we can take the mean and covariance parameters of $q(x_n \mid y_n)$ to be $\mu(y_n; \phi)$ and $\Sigma(y_n; \phi)$, respectively, where

$$(\mu(y_n; \phi), \Sigma(y_n; \phi)) = \text{MLP}(y_n; \phi)$$
 (16)

Encoder or Recognition Model.

$$\mathcal{L}(\vartheta^*, \phi) = \mathbb{E}_{q(x \mid y)} \ln p(y \mid x, \vartheta^*) - \mathrm{KL}(q(x \mid y) \parallel p(x)).$$

Section 2.3

Content from Ref [2]

- Achieved by decoder
- b) Achieved by encoder

a)

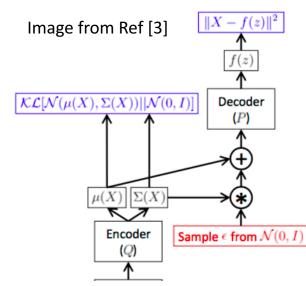
Another tractable family. Extension of Mean-field assumption to induce correlation as much as possible.

_**Idea 2**: Amortized Inference.

Idea 3: Reparameterization trick to make the objective differentiable with respect to x_n

Idea 4: Switching order of gradient and expectation.

Simplified Objective Function.



can be computed in closed form. To compute stochastic gradients of the expectation term, since a random variable $x_n \sim q(x_n \mid y_n)$ can be parameterized as

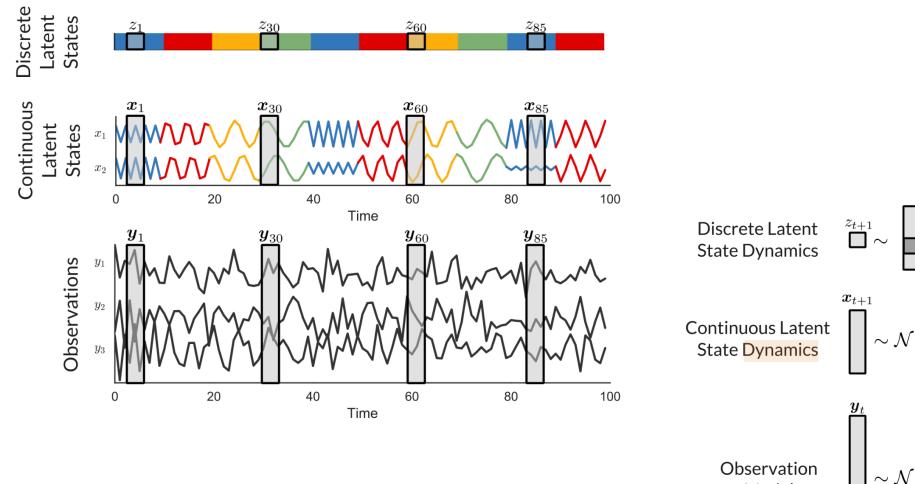
$$x_n = g(\phi, \epsilon) \triangleq \mu_q(y_n; \phi) + \Sigma_q(y_n; \phi)^{\frac{1}{2}} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I),$$

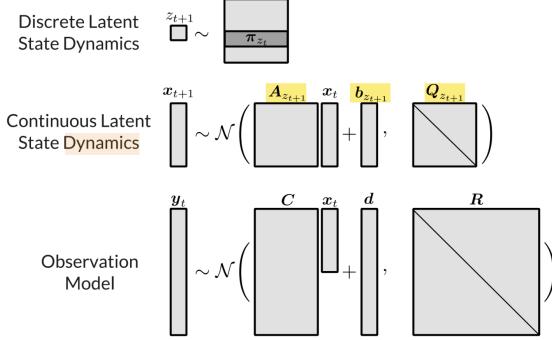
the expectation term can be rewritten in terms of $g(\phi, \epsilon)$ and its gradient approximated via Monte Carlo over ϵ ,

$$\nabla_{\vartheta^*,\phi} \mathbb{E}_q \ln p(y \mid x, \vartheta^*) \approx \sum_{n=1}^{N} \nabla_{\vartheta^*,\phi} \ln p(y_n \mid g(\phi, \hat{\epsilon}_n), \vartheta^*)$$

where $\hat{\epsilon}_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I)$. Because $g(\phi, \epsilon)$ is a differentiable function of ϕ , these gradients can be computed using standard backpropagation. For scalability, the sum over data points is also approximated via Monte Carlo. General non-

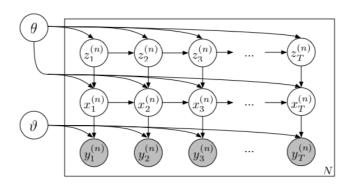
Switching Linear Dynamical Systems



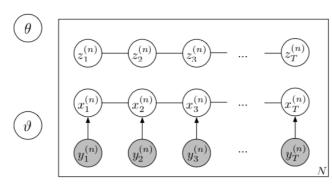


Section 3

Content from Ref [2]



(a) SLDS generative model with nonlinear observation model parameterized by ϑ .



(b) Structured CRF variational family with node potentials $\{\psi(x_t^{(n)}; y_t^{(n)}, \phi)\}_{t=1}^T$ parameterized by ϕ .

Figure 4. Graphical models for the SLDS generative model and corresponding structured CRF variational family.

$$x_{t+1} = A^{(z_t)} x_t + B^{(z_t)} u_t, \quad u_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I),$$
 (17)

where $A^{(k)}, B^{(k)} \in \mathbb{R}^{M \times M}$ for k = 1, 2, ..., K. The discrete latent state z_t evolves according to Markov dynamics,

$$z_{t+1} \mid z_t, \pi \sim \pi^{(z_t)}$$
 (18)

$$z_1 \mid \pi_{\text{init}} \sim \pi_{\text{init}},$$
 (19)

$$x_1 \mid z_1, \mu_{\text{init}}, \Sigma_{\text{init}} \sim \mathcal{N}(\mu_{\text{init}}^{(z_1)}, \Sigma_{\text{init}}^{(z_1)}).$$
 (20)

$$\theta = (\pi, \pi_{\text{init}}, \{(A^{(k)}, B^{(k)}, \mu_{\text{init}}^{(k)}, \Sigma_{\text{init}}^{(k)})\}_{k=1}^K).$$

$$y_t \mid x_t, \vartheta \sim \mathcal{N}(\mu(x_t; \vartheta), \Sigma(x_t; \vartheta)).$$
 (21)

$$(\mu(x_t; \vartheta), \Sigma(x_t; \vartheta)) = MLP(x_t; \vartheta). \tag{23}$$

Notice that the conditional $\psi(x_{-}t \mid y_{-}t,\phi)$ is written in information form to allow for relationships between parameters of conditionals and conditioning rv's to be simple

$$q(\theta, \vartheta, z_{1:T}, x_{1:T}) = q(\theta)q(\vartheta)q(z_{1:T})q(x_{1:T}). \tag{26}$$

To leverage bottom-up inference networks, we parameterize the factor $q(x_{1:T})$ as a conditional random field (CRF) (Murphy, 2012). That is, using the fact that the optimal factor $q(x_{1:T})$ is Markov according to a chain graph, we write

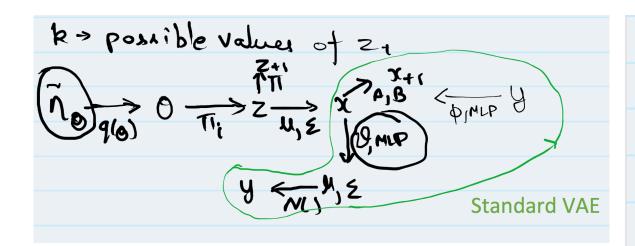
it terms of pairwise potentials and node potentials as

$$q(x_{1:T}) \propto \left(\prod_{t=1}^{T-1} \psi(x_t, x_{t+1})\right) \left(\prod_{t=1}^{T} \psi(x_t; y_t, \phi)\right)$$
 (27)

$$\psi(x_t; y_t, \phi) \propto \exp\left\{-\frac{1}{2}x_t^\mathsf{T} J(y_t; \phi) x_t + h(y_t; \phi)^\mathsf{T} x_t\right\},$$

$$(h(y_t; \phi), J(y_t; \phi)) = \mathrm{MLP}(y_t; \phi), \tag{28}$$

Workflow



max L(no, 0, 10) given y(n) & initialization of b, 19*, 1°; we want gradients. The way we shald wift these params to indeed 1: kelihood y p > P(xly) = N(Ux, Ex) Use values & to calculate gradients

Algorithm 1 Computing gradients of the SVAE objective

Input: Variational dynamics parameter $\tilde{\eta}_{\theta}$ of $q(\theta)$, observation model parameter θ^* , recognition network parameters ϕ , sampled sequence $y^{(n)}$

function SVAEGRADIENTS($\widetilde{\eta}_{\theta}$, ϑ^* , ϕ , $y^{(n)}$) $\psi \leftarrow \text{RECOGNIZE}(y^{(n)}, \phi)$ $(\hat{x}^{(n)}(\phi), \ \bar{t}^{(n)}_{zx}, \ \text{KL}(\phi)) \leftarrow \text{INFERENCE}(\widetilde{\eta}_{\theta}, \psi)$ $\widetilde{\nabla}_{\widetilde{\eta}_{\theta}} \mathcal{L} \leftarrow \eta_{\theta} + N(\bar{t}^{(n)}_{zx}, 1) - \widetilde{\eta}_{\theta}$ $\nabla_{\vartheta^*, \phi} \mathcal{L} \leftarrow \nabla_{\vartheta^*, \phi} \left[N \ln p(y^{(n)} | \hat{x}^{(n)}(\phi), \vartheta^*) - \text{KL}(\phi) \right]$ return natural gradient $\widetilde{\nabla}_{\widetilde{\eta}_{\theta}} \mathcal{L}$, gradient $\nabla_{\vartheta^*, \phi} \mathcal{L}$ end function

The SVAE algorithm computes a natural gradient with respect to $\widetilde{\eta}_{\theta}$ and standard gradients with respect to ϑ^* and ϕ . To compute these gradients, as in Section 2.2 we split the objective $\mathcal{L}(\widetilde{\eta}_{\theta}, \vartheta^*, \phi)$ as

$$\mathbb{E}_{q(x)} \ln p(y \mid x, \vartheta^*) - \text{KL}(q(\theta, z, x) \parallel p(\theta, z, x)). \quad (31)$$

$$\hat{x}^{(n)}(\phi) = g(\phi, \epsilon) \triangleq J^{-1}(\phi)h(\phi) + J(\phi)^{-\frac{1}{2}}\epsilon \qquad (34)$$

where $\epsilon \sim \mathcal{N}(0,I)$, $h(\phi) \in \mathbb{R}^{TM}$, and $J(\phi) \in \mathbb{R}^{TM \times TM}$. The matrix $J(\phi)$ is a block tridiagonal matrix corresponding to the Gaussian LDS of (27), the block diagonal of which depends on ϕ . Since $g(\phi,\epsilon)$ is differentiable with

Idea 3: Reparameterization trick to make the objective differentiable with respect to x_n

Algorithm 2 Model inference subroutine for the SLDS

Input: Variational dynamics parameter $\widetilde{\eta}_{\theta}$ of $q(\theta)$, node potentials $\{\psi(x_t;y_t)\}_{t=1}^T$ from recognition network function INFERENCE($\widetilde{\eta}_{\theta}$, $\{\psi(x_t;y_t)\}_{t=1}^T$)
Initialize factor q(x)repeat $q(z) \propto \exp\{\mathbb{E}_{q(\theta)q(x)}\ln p(z,x\mid\theta)\}$ $q(x) \propto \exp\{\mathbb{E}_{q(\theta)q(z)}\ln p(x\mid z,\theta)\}\prod_t \psi(x_t;y_t)$ until q(z) and q(x) converge $\widehat{x} \leftarrow \text{sample } q(x)$ $\overline{t}_{zx} \leftarrow \mathbb{E}_{q(z)q(x)}t_{zx}(z,x)$ KL $\leftarrow \text{KL}(q(\theta)\parallel p(\theta))$ $+N\mathbb{E}_{q(\theta)} \text{ KL}(q(z)q(x)\parallel p(z,x\mid\theta))$ returnsample \widehat{x} , expected stats \overline{t}_{zx} , divergence KL end function

$$\widetilde{\nabla}_{\widetilde{\eta}_{\theta}} \mathcal{L} = \eta_{\theta} + \sum_{n=1}^{N} \mathbb{E}_{q(z)q(x)}(t_{zx}(z^{(n)}, x^{(n)}), 1) - \widetilde{\eta}_{\theta}$$
 (32)

where q(z) and q(x) are taken to be locally optimal local mean field factors as in Eq. (7). Therefore by sampling the sequence index n uniformly at random, an unbiased estimate of the natural gradient is given by

$$\widetilde{\nabla}_{\widetilde{\eta}_{\theta}} \mathcal{L} \approx \eta_{\theta} + N \mathbb{E}_{q(z)q(x)}(t_{zx}(z^{(n)}, x^{(n)}), 1) - \widetilde{\eta}_{\theta}.$$
 (33)

References

- 1. David Blei, Rajesh Ranganath, Shakir Mohamed. NIPS 2016 Tutorial · December 5, 2016
- 2. Johnson, M., Duvenaud, D.K., Wiltschko, A., Adams, R.P. and Datta, S.R., 2016. Composing graphical models with neural networks for structured representations and fast inference. In Advances in neural information processing systems (pp. 2946-2954).
- 3. Doersch, C., 2016. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908.
- 4. Scott W. Linderman, Bayesian Time Series Analysis with Recurrent Switching Linear Dynamical Systems. April 12, 2016