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1 Introduction

21st century is indeed the age of Big-Data, i.e., data-sets so large that the existing
computing resources are not enough to process them within practical time-frames.
While there have been rapid improvements on the hardware side, the software imple-
mentations are still trying to catch up. One of the obvious challenges that arises when
utilizing these huge data-sets to train a model, is the optimization involved, which is
typical for any sort of parameter estimation. Due to the shear size of data-sets, the
advanced algorithms like Newton’s method, which have several advantages regarding
convergence, are unusable due to their computational complexities and practical re-
source limitations. As a result, practitioners have resorted to simpler methods among
which the most widely and effectively used one is the Gradient Descent (GD) Method.

The objective of this paper is to analyze the Stochastic Gradient Descent (SGD)
method. It is an attempt to answer questions like when and why SGD method would
converge to a desirable solution. It is an expectation that the insights from the analysis
presented in this paper may assist practitioners to come-up with more effective heuris-
tics. Moreover, theoreticians may be able to extend the analysis to more advanced
variants of SGD like the ones with adaptive step-sizes, which are not covered in this
paper. The analysis is largely based on section 4 of the detailed paper on the same
topic by Bottou et al. [1].

In this section the typical optimization problem in large-scale machine learning is pre-
sented along-with the variants of gradient descent algorithm used to solve it. Some
pros and cons of these variants are discussed in order to motivate the use of Stochas-
tic Gradient Descent methods. Then, a very generic form of the SGD algorithm is
presented that encompasses many of its present-day variants. This is done to make
the further analysis of the algorithm, in section 2, applicable to several cases simul-
taneously. The analysis in section 2 first covers the case of strongly convex objective
function with a fixed step-size (Theorem 3). Then the more general non-convex case is
analyzed for both, a fixed step-size (Theorem 4) and a diminishing step size (Theorem
5). Furthermore, a convergence in probability result is established for l2 norm of the
gradient (Theorem 6). Both, theorems 3 and 4 help gain insight into a commonly used
heuristic by practitioners. Theorems 5 and 6 bring out the importance of a diminishing
step-size which helps converge even when the estimates of the expected gradient are
noisy. Finally the insights are summarized in section 3.
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1.1 Typical Problem Formulation

In this sub-section, the typical optimization problem in large-scale machine learning is
considered. However, the results can be easily extended to other optimization problems
as well. Consider a given data-set, D = {(xi, yi)}i where (xi, yi) pairs are drawn
from an unknown joint distribution, P (x, y). Here, notation x, y denotes inputs and
outputs of the system under consideration respectively and let x ∈ Rdx , y ∈ Rdy . Let
i ∈ [N ] where N ∈ N are total number of samples in D and notation [n] denotes the
enumeration of natural numbers upto and including n ∈ N. Typically a fixed form of
prediction function, h(·;w) : Rdx → Rdy is assumed parameterized by a real vector,
w ∈ Rp. The problem is to estimate this w using data-set D. This is typically done
by minimizing an appropriate loss function, l(·, ·, ·) : Rdx × Rdy × Rp → R. The loss,
l(x, y, w) corresponds to error in model fitting when h(x;w) and y are the predicted
and true outputs respectively.

Now, given data D, the target usually is to minimize l(x, y, w) with respect to w.
Ideally, it is desired to minimize the expected loss, F (w) = Ex,y[l(x, y, w)] where the
subscript of the expectation denotes the random variables over which it is taken. But
the joint distribution, P (x, y) is not explicitly known. So, an approximation to the
expected loss is used, typically the empirical mean, i.e., F (w) = 1

N

∑N
i=1(l(xi, yi, w)) .

Hence, it is desired to reach a stationary point, i.e., a point where the gradient ∇F (or
its estimate) is zero, while minimizing the objective function, F (w). This is usually
done by iteratively moving in the direction of steepest descent, −∇F (wk), where k is
the iteration number. This algorithm is known as Gradient Descent (GD).

It is important to note that ∇F is a gradient of an expectation. In most cases of
interest, it can be replaced by an expectation of the gradient. In case of a finite sum,
it is straight-forward and in case of an integral sign, Leibniz integral rule can be used.
Leibniz integral rule may in-turn be proved through Dominated Convergence Theorem
under some mild regularity conditions, including boundedness of l(x, y, w). So, an
estimate of expected value of the gradient ∇F , over the samples (xi, yi), is needed.
If this estimate is computed using the entire data-set D before taking the step, it
is known as Batch Gradient Descent (BGD) but if estimate of gradient is computed
by randomly selecting 1 sample from D, it is known as Stochastic Gradient Descent
(SGD). Both approaches have their advantages and disadvantages but in practice,
what is widely used is something in-between the two, i.e., Mini-Batch Gradient Descent
(MBGD) where gradient is estimated using a small subset of samples of D. Frequently,
in machine learning literature, MBGD is also referred to as the Stochastic Gradient
Descent as the gradient estimates are obtained from random sampling and hence are
noisy. The convergence of the three variants is qualitatively shown in figure 1 over a
contour plot of a two dimensional quadratic objective function with minimum at the
center.

1.2 Motivations for SGD

There are several motivations for using SGD over BGD in practice. First and foremost
would be that even if the gradient estimates for the ith sample ∇F = ∇wl(xi, yi, w)
are unbiased estimator of the true gradient, the standard error in approximating ex-
pectation from empirical mean reduces at the rate proportional to 1√

N
, where N are
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Figure 1: Qualitative convergence of the three variants of GD.
(Image from Towards Data Science)

total number of samples used in approximating the expectation. This is a direct con-
sequence of Weak Law of Large Numbers in probability theory. So, these less than
linear returns in accuracy of the estimate of ∇F motivate use of fewer samples. For
eg., compare two hypothetical estimates of the expected gradient, one based on 100
examples and another based on 10,000 examples. The latter requires 100 times more
computation than the former but reduces the standard error of the expectation only
by a factor of 10.

Another motivation is the presence of redundancy, especially in large data-sets. It is
very likely that several samples make very similar contributions to the gradient. This
makes it useless to utilize the entire data-set for estimating the expected gradient.
Hence, SGD is a more efficient use of resources in this regard.

But SGD has its cons as well, the primary one being noise in the expected gradient
estimates. As it will be shown in the following section, if this noise in the estimates, is
very high, the asymptotic optimality gap would be higher as well. Another disadvan-
tage is, SGD doesn’t allow exploiting parallelization to speed-up the training which
is a crucial practical consideration. Fortunately, both of these flaws can be mitigated
by MBGD and hence it is the most widely used algorithm. Taking a random subset
of samples to estimate expected gradient, reduces the variance of the estimate as well
as allows parallelization during iterative optimization updates. For the sake of this
paper and further analysis, all these variants are referred as SG method as they are
encompassed into a very generic Algorithm 1.

1.3 The Algorithm

The generalized stochastic gradient descent algorithm is presented in Algorithm 1. It
presumes existence of 3 computational tools as follows:

1. A way to generate realizations of random variable dk = {(xi, yi)}i∈[N ], i.e., a set
of random samples from the data distribution at iteration k.

2. A way to compute stochastic vector, g(wk, dk) given both, dk and wk.

3. A method for selecting the step size, αk at epoch k.

Indeed, the form of the algorithm presented is very general in the sense that the
gradient vector g(wk, dk) can be estimated in any way as outlined in the subsection
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1.1. Apart from that, g(wk, dk) can also be estimated using stochastic-Newton and
Quasi-Newton directions and the following analysis will still be valid.

Algorithm 1 SG Method

1: Choose an initial iterate, w1, of parameters.
2: for k ← 1 to K do . K refers to no. of iterations
3: Generate a realization of the random variable dk
4: Calculate the stochastic vector g(wk, dk)
5: Select a step size αk based on a desired criteria.
6: Evaluate next iterate, wk+1 = wk − αkg(wk, dk)
7: end for

2 Analysis of SG Method

This section will make an attempt at getting some insight into the convergence prop-
erties of SG method. The essential assumptions required for all the following analysis
are stated first. The assumptions for specific cases will be mentioned later, as needed.

Main Assumptions:

1. The objective function F : Rp → R is continously differentiable and its gradient,
∇F : Rp → Rp is Lipschitz continuous with Lipschitz constant L > 0, i.e.,

‖∇F (w)−∇F (w̄)‖2 ≤ L‖w − w̄‖2 ∀w, w̄ ∈ Rp (1)

2. The sequence of iterates wk is contained in an open set over which F is bounded
below by a scalar Finf .

3. ∃ scalars µG ≥ µ > 0 such that, ∀k ∈ N,

∇F (wk)
TEdk [g(wk, dk)] ≥ µ‖∇F (wk)‖22 (2)

‖Edk [g(wk, dk)]‖2 ≤ µG‖∇F (wk)‖2 (3)

4. ∃ scalars M > 0 and MV > 0 such that ∀k ∈ N,

Vdk [g(wk, dk)] ≤M +MV ‖∇F (wk)‖22 (4)

Edk [·] and Vdk [·] denote expected value and variance taken with respect to the distri-
bution of the random variable dk given wk.

First assumption ensures that the gradient of ∇F doesn’t change arbitrarily quickly
because otherwise it won’t be a good indicator of how far to move to decrease F .
Second assumption merely wants objective to be lower bounded over the parameter
space of w. This is usually the case, for eg: squared loss is lower bounded by 0.
Third assumption ensures that in expectation, the function −g(wk, dk), is a direction
of sufficient descent with a norm comparable to the norm of ∇F . This also occurs
commonly in practice . For eg, if g(wk, dk) is an unbiased estimator of ∇F , the
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conditions hold trivially with equality and for µG = µ = 1. Fourth assumption restricts
the variance of the estimate g(wk, dk) but in a relatively minor manner. For eg, if F is
a complex quadratic function, the variance is allowed to be non-zero at any stationary
point and can increase quadratically in any direction.

Under the first assumption, the following lemma can be proved.

Lemma 1. The iterates of SG satisfy the following inequality ∀k ∈ N

Edk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
TEdk [g(wk, dk)] +

1

2
α2
kLEdk [‖g(wk, dk)‖22] (5)

Proof. From assumption 1, it can be shown that (refer to Appendix B of [1]),

F (w) ≤ F (w̄) +∇F (w̄)T (w − w̄) +
1

2
L‖w − w̄‖22 ∀w, w̄ ∈ Rp (6)

Putting w = wk+1 and w̄ = wk and rearranging gives,

F (wk+1)− F (wk) ≤ ∇F (wk)
T (wk+1 − wk) +

1

2
L‖wk+1 − wk‖22

≤ −αk∇F (wk)
Tg(wk, dk) +

1

2
α2
kL‖g(wk, dk)‖22

Taking expectation in this inequality with respect to dk and noting that wk doesn’t
depend on dk, the result follows.

The third and fourth assumptions basically put further restrictions on first and second
moment of the gradient estimates g(wk, dk). Under all 4 assumptions, the following
lemma can be proved.

Lemma 2. The iterates of SG satisfy the following inequality ∀k ∈ N

Edk [F (wk+1)]− F (wk) ≤ −µαk‖∇F (wk)‖22 +
1

2
α2
kLEdk [‖g(wk, dk)‖22] (7)

≤ −
(
µ− 1

2
αkLMG

)
αk‖∇F (wk)‖22 +

1

2
α2
kLM (8)

where MG = MV + µ2
G ≥ µ2 > 0

Proof. From lemma 1 and (2), result (7) follows as,

Edk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
TEdk [g(wk, dk)] +

1

2
α2
kLEdk [‖g(wk, dk)‖22]

≤ −µαk‖∇F (wk)‖22 +
1

2
α2
kLEdk [‖g(wk, dk)‖22]

The definition of variance is,

Vdk [g(wk, dk)] = Edk [‖g(wk, dk)‖22] + ‖Edk [g(wk, dk)]‖22 (9)

Using (3) and (4) with this definition gives,

Edk [‖g(wk, dk)‖22] ≤M +MG‖∇F (wk)‖22 (10)

Using this result in second term of right-hand-side (RHS) of (7) yields (8).
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Both lemmas 1 and 2 reveal that regardless of how the method arrived at the iterate
wk, the optimization process and convergence continues in a Markovian manner, i.e.,
depends only on the iterate wk, dk and αk and not on any past iterates. This is obvious
from (8) where the expected difference between the two values of the objective function
is upper bounded by a deterministic quantity. First term in (8) is strictly negative for
small αk. However, the second term could be large enough to allow the objective value
to increase. Balancing these two terms is critical in the design of SG method.

2.1 SG Method for Strongly Convex Objective

In this subsection, the analysis is carried further with an additional assumption of
strong convexity of the objective function, F (w), i.e., ∃ a scalar c > 0 such that

F (w) ≥ F (w̄) +∇F (w̄)T (w − w̄) +
1

2
L‖w − w̄‖22 ∀w, w̄ ∈ Rp (11)

Therefore, F (w) has a unique minimizer, say w∗ ∈ Rp and let F∗ = F (w∗). Whenever
a function is strongly convex, a fact (without proof) from convex analysis can be used,
which is,

2c(F (w)− F∗) ≤ ‖∇F (w)‖22 ∀w ∈ Rp (12)

It is also to be noted that from (6) and (11), c ≤ L. The first theorem of convergence
analysis can now be stated and proved.

Theorem 3. Under four main assumptions and additional strong convexity assump-
tion in (11), if the SG method is run with a fixed step size, αk = α ∀k ∈ N such
that

0 < α <
µ

LMG

(13)

Then the expected optimality gap, ∀k ∈ N can be upper bounded as

E[F (wk)− F∗] ≤
αLM

2cµ
+ (1− αcµ)k−1

(
F (w1)− F∗ −

αLM

2cµ

)
−−−→
k→∞

αLM

2cµ

(14)

where the total expectation, E[F (wk)] = Ed1Ed2 ...Edk−1
[F (wk)]

Proof. Using (8) from Lemma 2 with (12) and (13) gives,

Edk [F (wk+1)]− F (wk) ≤ −
(
µ− 1

2
αLMG

)
α‖∇F (wk)‖22 +

1

2
α2LM

≤ −1

2
αµ‖∇F (wk)‖22 +

1

2
α2LM

≤ −αcµ(F (wk)− F∗) +
1

2
α2LM

Subtracting F∗ both sides and rearranging gives,

Edk [F (wk+1)]− F∗ ≤ (1− αcµ)(F (wk)− F∗) +
1

2
α2LM

6



Taking total expectation and subtracting constant αLM
2cµ

both sides yields,

E[F (wk+1)− F∗]−
αLM

2cµ
≤ (1− αcµ)E[F (wk)− F∗] +

1

2
α2LM − αLM

2cµ

= (1− αcµ)

(
E[F (wk)− F∗]−

αLM

2cµ

) (15)

Noting that by (13),

0 < αcµ <
cµ2

LMG

≤ cµ2

Lµ2
=
c

L
≤ 1

So, (15) is a contraction inequality. Hence, the desired result follows by applying (15)
repeatedly over all iterations k ∈ N.

If there is no noise in the gradient computation or if the noise decays with ‖∇F (wk)‖22 ,
i.e., if M = 0, then a geometric (R-linear) convergence to the optimal value is achieved.
This is a standard result for BGD method with a sufficiently small positive α.

If the gradient computation is noisy, a fixed αk can still be used and the expected
objective values will converge geometrically (or R-linearly) to a neighborhood of the
optimal value. But, after some point, the noise in the gradient estimates will prevent
further progress. This limitation can also be seen from (8). As the solution is ap-
proached, the first term on RHS becomes smaller (since ∇F (wk)→ 0) but the second
term remains constant. From (14), selecting a smaller αk worsens the contraction
constant but allows to arrive closer to the optimal value. This provides important
insight into effectiveness of a heuristic strategy often employed in practice by which
SG method is run with a fixed αk and, if progress appears to stall, a smaller αk is
selected and the process is repeated.

2.2 SG Methods for Non-Convex Objective

In this subsection, the analysis is extended to the most widely used and practical case,
i.e. when the objective F (w) is non-convex and the step-size, αk is diminishing. Before
that, a result for fixed αk is derived which has similar conclusions as from the previous
theorem.

Theorem 4. Under the four main assumptions, if the SG method is run with a fixed
step size, αk = α ∀k ∈ N such that

0 < α ≤ µ

LMG

(16)

then ∀K ∈ N

E

[
K∑
k=1

‖∇F (wk)‖22

]
≤ KαLM

µ
+

2(F (w1)− Finf )
µα

(17)

⇒ E

[
1

K

K∑
k=1

‖∇F (wk)‖22

]
≤ αLM

µ
+

2(F (w1)− Finf )
Kµα

−−−→
K→∞

0 (18)
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Proof. From the condition in (16) and taking total expectation in (8) gives,

E[F (wk+1)]− E[F (wk)] ≤ −(µ− 1

2
αLMG)αE[‖∇F (wk)‖22] +

1

2
α2LM

≤ −1

2
µαE[‖∇F (wk)‖22] +

1

2
α2LM

Summing both sides for k ∈ [K] and using main assumption 2 gives,

Finf − E[F (w1)] ≤ E[F (wk+1)]− E[F (w1)] ≤ −
1

2
µα

K∑
k=1

E[‖∇F (wk)‖22] +
1

2
LMKα2

Rearranging terms gives (17) and further multiplying both sides by 1
K

yields (18)

Very similar to the conclusions of the previous theorem, if there is no noise in the
gradient computation or if the noise decays with ‖∇F (wk)‖22 , i.e., if M = 0, then sum
of squared gradients remains finite as seen from (17) which implies {‖∇F (wk)‖2} → 0
as K →∞. This is again a standard result for BGD method with a sufficiently small
positive α.

In case of noisy gradient estimates, while one cannot bound the expected optimality
gap as in the convex case, it is possible to bound the average norm of the gradient of the
objective function observed on wk visited during the first K iterations. This quantity
gets smaller whenK increases, indicating that the SG method spends increasingly more
time in regions where the objective function has a (relatively) small gradient. Similar
to the conclusions of the previous theorem, the asymptotic result of (18) illustrates
that the noise eventually stops the progress towards the optimum. The average norm
of the gradients can be made arbitrarily small by selecting a smaller αk, but doing
so also reduces the speed at which the average norm of the gradient approaches its
limiting value.

In the following theorem, the convergence in case of a diminishing step-size is analyzed.

Theorem 5. Under the four main assumptions, if the SG method is run with a step
size sequence satisfying the classical Robbins-Monro conditions [2], i.e.,

∞∑
k=1

αk =∞ and

∞∑
k=1

α2
k <∞ (19)

then ∀K ∈ N

lim
K→∞

E

[
K∑
k=1

‖∇F (wk)‖22

]
<∞ (20)

⇒ E

[
1

AK

K∑
k=1

‖∇F (wk)‖22

]
−−−→
K→∞

0 (21)

where, AK =
∑K

k=1 αk
8



Proof. From the second condition in (19), it is clear that {α2
k} → 0 ⇒ {αk} → 0.

Therefore, without loss of generality (WLOG), it can be assumed that αkLMG ≤
µ ∀k ∈ N (i.e., the first k0 ∈ N for which this is true, can be considered as the first
iterate). Now, taking total expectation in (8) gives,

E[F (wk+1)]− E[F (wk)] ≤ −(µ− 1

2
αkLMG)αkE[‖∇F (wk)‖22] +

1

2
α2
kLM

≤ −1

2
µαkE[‖∇F (wk)‖22] +

1

2
α2
kLM

Summing both sides for k ∈ [K] gives,

Finf −E[F (w1)] ≤ E[F (wk+1)]−E[F (w1)] ≤ −
1

2
µ

K∑
k=1

αkE[‖∇F (wk)‖22] +
1

2
LM

K∑
k=1

α2
k

Multiplying both sides by 2
µ

and rearranging the terms yields,

K∑
k=1

αkE[‖∇F (wk)‖22] ≤
2(E[F (w1)]− Finf )

µ
+
LM

µ

K∑
k=1

α2
k

Note that by the second condition of (19), the RHS converges to a finite value as K →
∞. This proves (20). Furthermore, by first condition of (19), K → ∞ ⇒ AK → ∞.
Hence, (21) follows.

This theorem establishes results about a weighted sum-of-squares and a weighted av-
erage of squared gradients of F similar to those in the previous one. However, unlike
the previous theorem, the result (21) states that the weighted average norm of the
squared gradients converges to zero even if the gradients are noisy, i.e., if M > 0. This
is due to the fact that the αk need not be fixed anymore and just need to satisfy (19).

The following theorem will show a stronger and important convergence result for l2
norm of the gradient of F .

Theorem 6. For any K ∈ N let k(K) ∈ [K] be a random index chosen with probability
proportional to {αk}Kk=1. If the conditions of Theorem 5 hold, then,

lim
K→∞

‖∇F (wk(K))‖2 −−−−−−−−→
in probability

0 (22)

Proof. For any ε > 0, using (20) and Markov’s inequality gives,

P(‖∇F (wk)‖2 ≥ ε) = P(‖∇F (wk)‖22 ≥ ε2) ≤ E[Ek[‖∇F (wk)‖22]]
ε2

−−−→
K→∞

0

which proves the desired result by definition of convergence in probability.

The result of this theorem is a stronger conclusion than the previous theorem but is
only valid for gradient of F at a randomly selected iterate.
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3 Conclusion

In this paper, an analysis of stochastic gradient method is presented. First, a very
generic form of the Stochastic Gradient Descent algorithm is presented that encom-
passes many of its present-day variants. This is done to make the analysis of the
algorithm applicable to several cases. The analysis is based on 4 main assumptions.
It first covers the case of a strongly convex objective function with a fixed step-size
(Theorem 3). Then the more general non-convex case is analyzed for both, a fixed
step-size (Theorem 4) and a diminishing step size (Theorem 5). Both, Theorem 3 and
4 help gain insight into the effectiveness of a popularly used heuristic by practitioners,
i.e., starting with a fixed step-size, waiting for the decrease in objective value to stall
followed by a reduction in the step-size and repeating the process. Theorem 5 and 6
bring out the importance of another widely used practice, i.e., a diminishing step-size
schedule. It helps converge close to a local-minimum even when the estimates of the
expected gradient are noisy. It is anticipated that the analysis and insights presented
in this paper can assist practitioners to come up with more effective heuristics. More-
over, theoreticians may be able to extend the analysis to more advanced variants of
SGD like the ones with adaptive step-sizes.
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