
Tushar Agarwal (.270)
ECE 5759 Project

1

A Survey of Gradient-Descent Optimizer Variants

Introduction

Machine learning (ML) is a very powerful tool in the tool-box of modern-day engineers. It can be applied
to wide range of problems and this project is one of its many applications. ML is broadly divided into
supervised and unsupervised learning. Supervised learning is training a model using inputs having
corresponding targets or labels. Unsupervised learning tries to find hidden structure in unlabeled data.
Optimization is an essential part of all ML algorithms and the most extensively used ones, for this
purpose, are the gradient descent method and its variations. This project, Digit Recognizer, is a
fundamental example of how combination of image processing with supervised learning gives the
machines the astounding capability of “Computer Vision”.

Deep learning, a subfield of ML, works based on artificial neural networks (ANNs) [1]. These ANNs are
universal function approximators which try to find the system model by mapping input labelled data to
its labels. The process involves minimizing a loss function and to achieve this minimization, numerical
optimization must be used. The unknown parameters in ANNs are the tunable weights and biases. The
loss functions (functions to be minimized) are chosen to be convex (usually mean squared error). Given
the high complexity of ANNs, the most extensively used algorithm for optimization of parameters in
ANNs is the Gradient Descent (GD) method. The GD method in its original form is not suitable for
calculations with large datasets (>1000000). So, the algorithm is modified in several ways which makes
its application easier and suitable for specific applications. Reader is encouraged to refer [1], if
unfamiliar with the ANNs.

The primary objective of this project is to make a program that recognizes handwritten digits using basic
deep learning. For this purpose, an ANN is trained using the MNIST (Modified National Institute of
Standards and Technology) dataset released in 1999 and provided by Kaggle.com for this project. The
effectiveness of the model is then tested using accuracy score (percentage of correct predictions) on
validation and test datasets. Another objective here is to test different optimizer algorithms for the
same training task and determine preferable optimizers for such image processing tasks. The resulting
program is submitted to the Kaggle.com competition.

Optimizers for Neural Networks

Mathematically, the GD algorithm can be simply expressed as

𝑊"#$ = 𝑊" − 𝛼∇)𝐽(𝑊")
 (1)

Where , 𝑊" ∈ ℝ/ is the vector of parameters (weights and biases), 𝐽(𝑊"):ℝ/ → ℝ is the loss function,
𝛼 is the step-size which is also referred to as the learning rate & subscript 𝑘 denotes the 𝑘34 time-step.

There are three variants of gradient descent, which differ in how much data is used to compute the
gradient of the loss function	∇)𝐽(𝑊"). Depending on the amount of data, a trade-off is made between
the accuracy of the parameter update and the time it takes to perform an update.

Tushar Agarwal (.270)
ECE 5759 Project

2

Batch gradient descent

This is the basic GD algorithm. It computes the gradient of the loss function with respect to the weights
for the entire training dataset and then takes their mean as the final value of the gradient.
Mathematically,

∇)𝐽(𝑊") =
1
𝑛
8∇)𝐽(𝑊", 𝑥;, 𝑦;)
=

;>$

 (2)

Where 𝑥;	&	𝑦; denote training data features and labels respectively.
Batch gradient descent is guaranteed to converge to the global minimum for convex error surfaces and
to a local minimum for non-convex surfaces. But it can be very slow because the gradients for the whole
dataset need to be calculated for a single update and is impractical for large datasets. It also doesn’t
allow real-time update of the model.

Stochastic gradient descent

Stochastic gradient descent (SGD) performs a parameter update for each training example

∇)𝐽(𝑊") = ∇)𝐽(𝑊", 𝑥;, 𝑦;)

It is believed [2] that not all training samples are unique, i.e. there exists redundancies when batch
gradient descent calculates mean gradient for large datasets, as it computes gradients for similar
examples before each parameter update. SGD does away with this redundancy by performing one
update at a time. SGD doesn’t have such redundancies and therefore, is usually much faster while also
providing flexibility to update the model in real-time. SGD performs frequent updates with a high
variance that cause the objective function to fluctuate heavily as in Figure 1.

In cases where multiple stationary points exist, batch gradient descent converges to the local minimum
of the basin the parameters are placed in. SGD’s fluctuation, on the one hand, enables it to jump to new
and potentially better local minima but on the other hand, it might keep overshooting making it difficult
to converge to a minimum.

Mini-batch gradient descent

Mini-batch GD is a middle-ground between SGD and Batch GD. It finds gradients on a mini-batch of
some m training samples, where m<n.

∇)𝐽(𝑊") =
1
𝑚
8∇)𝐽(𝑊", 𝑥;, 𝑦;)
A

;>$

Thus, it reduces the variance of the parameter updates which can lead to more stable convergence and
can make use of highly optimized matrix optimizations common to state-of-the-art deep learning
libraries that make computing the gradient w.r.t. a mini-batch, very efficient. Common mini-batch sizes
range between 50 and 256 but can vary for different applications. Mini-batch gradient descent is
typically the algorithm of choice when training a neural network, is widely used and usually referred to
as Stochastic Gradient Descent instead of SGD itself. For sake of simplicity, the parameters 𝑥; and 𝑦; are
left out here onwards and should be taken for granted when calculating loss function 𝐽 or its gradient.

Tushar Agarwal (.270)
ECE 5759 Project

3

Variations of Gradient descent optimization

The Gradient descent in its original form has many challenges to overcome, especially when it comes to
large data-sets. Therefore, many variations of this have been developed specifically for the deep
learning applications. The following list is not exhaustive as some variations, which are infeasible to
compute in practice for high-dimensional data sets, have been skipped. For e.g. second-order methods
like Newton’s method.

Momentum Term

SGD has trouble navigating through areas where the surface curves much more steeply in one
dimension than the other [3], a common phenomenon around local optima. In these scenarios, SGD
oscillates across the steep slopes of the surface while only making slow progress towards the local
optimum. Momentum [4] is a method that helps accelerate SGD in the relevant direction and dampens
oscillations by adding a fraction 𝛾 (usually set ≈ 0.9) of the update vector 𝑣 of the current time step to
the next update vector.

𝑣"#$ = 𝛾𝑣" + 𝛼∇)𝐽(𝑊")
 (4)

𝑊"#$ = 𝑊" − 𝑣"#$
 (5)
Analogous to the momentum of a ball rolling down-hill, the momentum term increases updates for
dimensions whose gradients point in the same directions and reduces updates for dimensions whose
gradients change directions. This results in faster convergence and reduced oscillations.

Nesterov accelerated gradient

Nesterov accelerated gradient (NAG) [5] is an improvement on the momentum method. As the
momentum term 𝛾𝑣" is used to move the parameters of	𝑊", 𝑊"	is replaced by (𝑊" − 𝛾𝑣") in Eq. (4) as
this gives an approximation of the next position of the parameters. Thus, the gradient is calculated w.r.t.
the approximate future position of parameters and therefore this algorithm has a predictive behavior:

𝑣"#$ = 𝛾𝑣" + 𝛼∇)𝐽(𝑊" − 𝛾𝑣")
 (6)

The anticipatory behavior of NAG has significantly increased the performance of Recurrent Neural
Networks [6].

Adagrad

Adagrad [7] is an algorithm for gradient-based optimization that adapts the learning rate to individual
parameters, performing larger updates for infrequent and smaller updates for frequent parameters. It is
therefore, well-suited for dealing with sparse data.
Let 𝑖34 parameter of the vector 𝑊" at 𝑘34 time-step be	𝑊",;. In its update rule, Adagrad modifies the
general learning rate 𝛼 at each time step 𝑘 for every 	𝑊",;	based on its past gradients:

𝑊"#$,; = 	𝑊",; −
𝛼

G𝐺",;; + 𝜖
. ∇)K,L𝐽(𝑊")

 (7)

Where 𝐺" ∈ ℝ/×/ is a diagonal matrix whose each diagonal element	𝐺",;; = ∑ O∇)P,L𝐽Q𝑊RST
U

"
R>$, 𝜖 is a

smoothening term that avoids division by zero (usually of the order	1𝑒WX).
Let 𝑔",; = ∇)K,L𝐽(𝑊") ⇒ 𝑔" = ∇)K𝐽(𝑊")

Tushar Agarwal (.270)
ECE 5759 Project

4

This elementwise notation can be vectorized using the elementwise matrix-vector product ⨀ as:

𝑊"#$ = 	𝑊" −
𝛼

G𝐺" + 𝜖
⨀𝑔" = 	𝑊" − Δ𝑊"

 (8)

Where Δ𝑊" is the update vector. The following algorithms are expressed in terms of modifications to
this update vector.
Demerit of using Adagrad is its accumulation of the squared gradients in the denominator causing the
learning rate to aggressively decrease to zero and so, the algorithm is unable to acquire additional
knowledge.

RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by Professor Geoffrey Hinton in
one of his Lectures [8]. It is an extension of Adagrad that seeks to reduce its rapidly diminishing learning
rate by restricting the window of accumulated past gradients to some fixed size 𝑑. The running average
𝐺"	at time step 𝑘 then depends (as a fraction	𝛾 = 0.9, similar to the Momentum term) only on the
previous average and the current gradient:

𝐺" = 𝛾𝐺"W$ + (1 − 𝛾)(𝑔")U ⇒ 𝐺" = 𝐸[𝑔U]" = 𝛾𝐸[𝑔U]"W$ + (1 − 𝛾)𝑔"U
 (9)

Where 𝐸[] refers to the expectation operator and 𝑔"U ∈ ℝ/×/	is a diagonal matrix who’s each diagonal
element is the square of the gradient with respect to each individual parameter 𝑊;.

Adadelta

Adadelta [9] can be considered an extension to RMSprop algorithm. It also tries to match the units of
the update Δ𝑊" and the parameter	𝑊". For this, 𝛼 is replaced by decaying average of squared
parameter updatesGE[(Δ𝑊U)"W$] + 𝜖 where	E[(Δ𝑊U)"W$] = 𝛾E[(Δ𝑊U)"WU] + (1 − 𝛾)(Δ𝑊"W$)U.
Thus, the final expression for Adadelta update rule is:

Δ𝑊" =
GE[(Δ𝑊U)"W$] + 𝜖

G𝐸[𝑔U]" + 𝜖
. 𝑔"

 (10)

Adadelta eliminates the need to specify a learning rate.

Adam

Adaptive Moment Estimation (Adam) [10] is an algorithm which uses both, decaying averages of past
gradients (𝑚3) and squared gradients (𝑣3)

𝑚" = 𝛽$𝑚"W$ + (1	 −	𝛽$)𝑔", 𝑛" = 𝛽U𝑛"W$ + (1	 −	𝛽U)𝑔"U
 (11)
𝑚" and 𝑛" are estimates of the first and second moment of the gradients respectively, hence the name
of the method. As 𝑚" and 𝑛"	are initialized as vectors of zeros, they are biased towards zero, especially
during the initial time steps and when 𝛽$ and 𝛽U are close to 1. So, bias-corrected first and second
moment estimates 𝑚e" =

AK
$WfgK

 and 𝑛h" =
=K

$WfiK
 are used in the final update rule as follows:

Δ𝑊" =
𝛼

G𝑛h" + 𝜖
𝑚e"

Tushar Agarwal (.270)
ECE 5759 Project

5

 (12)
Usually 𝛽$ ≈ 0.9 and	𝛽U ≈ 0.999. Adam has been shown to work well in practice.

Adamax

The G𝑛" term in Adam update basically scales the gradient inversely proportional to the 𝑙U norm of the
past and current gradients. This can be extended to any general 𝑙/ norm but for 𝑝 > 2 they are
generally unstable [2]. But 𝑙n norm has been found to give stable results [10] and the Adamax optimizer
is based on this concept. So the update rule becomes:

Δ𝑊" =
𝛼
𝑢"
𝑚e"

 (13)

Where 𝑢" = 𝛽Un𝑢"W$ + (1	–	𝛽Un)|𝑔"|∞ ⇒ 𝑢" = max(𝛽U. 𝑢"W$, |𝑔"|)

Experiment

The programming for this project has been done in Python because it has inbuilt libraries for machine
learning models and convenient IDEs like Spyder to use. The model fitting functions are used from
python’s keras library in conjunction with using the Tensorflow backend.

The dataset contains a total of 76000 scanned images of handwritten digits, together with their correct
classifications. The data files are named train.csv (with 48000 images) and test.csv (with 28000 images)
named appropriately and contain gray-scale images of hand-drawn digits, from zero through nine. Each
image is 28 pixels in height and 28 pixels in width. Each pixel-value is an integer between 0 and 255,
indicating the lightness or darkness of that pixel, with higher numbers meaning darker. The test data has
been taken from a distinct set of 250 people compared to the training data. If the program works good
for the test data, it will indicate that system can recognize digits from people whose writing it didn't see
during training. The training data is further divided randomly into a training set (80%) and a validation
set (20%). The accuracy scores displayed in the results section are for the validation data-set.

The image data is provided in the form of a (48000 X 785) table or data-frame where first column
represents the output label (Y) of the image and remaining 784 columns represent each pixel values.
These 784 columns will be the input or features (X) of the model. The first column containing output
labels cannot be used as is because training an ANN requires a categorically distributed output with
binary values. Therefore, the technique referred to as one-hot encoding is used which distributes a
single column of data with n types of values (n=10 here) into n columns of data with only binary values.
Each row in this new data-frame has all 0’s except one 1 in the column of the category that row
originally belonged to.

For each of the 28000 images in the test set, the output of the program will be a single line containing
the ImageId and the predicted digit. For example, if the prediction is that the first image is of a 3 and
second image is of a 7, then the output would look like:

(ImageId,Label)
(1,3)
(2,7)
…(27998 more lines)…

Tushar Agarwal (.270)
ECE 5759 Project

6

Preprocessing is a crucial step before fitting any supervised learning models. For this project, the images
are converted to binary images with a 0 for all values below a threshold value, 𝑡ℎ, and 1 for all values
above 𝑡ℎ. This is a common technique used in image-processing and is referred to as thresholding. 𝑡ℎ	
value for this project has been taken as 0. This is done because the different gray-scale intensities are
unimportant for this application. The identification of different shapes of the digits can be done with just
a pair of colors, black (0) and white (1). This increases the effectiveness of training the models as well as
prediction accuracies by removing non-essential features (color, in this case) which the model would
have tried to learn.

The ANN model is built with 2 fully connected hidden layers having activation function ‘ReLU’ 𝑓(𝑥) =
max(0, 𝑥). The output layer uses the sigmoid activation function 𝜎(𝑥) = $

$#yz{
 . These activation

functions are essential for the ANN as they help the ANN to capture non-linearities of the function being
approximated. The 1st and 2nd hidden layers have 256 and 64 neurons respectively. The model is trained
for 15 epochs where 1 epoch refers to set of iterations which uses all of the data in different non-
overlapping batches, to update the gradient. The final loss function used in categorical cross-entropy.

All of the 8 optimizers mentioned above are used to train the ANN to see their respective performances
in terms of accuracy over validation dataset and total time consumed.

Results & Discussion

The results from executing the program are as follows.

Table 1

Optimization
Algorithm

Time consumed for
training (s)

Final Validation
Accuracy

Final Loss
Function value

SGD 15.0303 0.9168 0.2744
SGD with momentum 14.7540 0.9676 0.1252
SGD with momentum
and Nesterov

15.3754 0.9711 0.1265

Adagrad 16.8868 0.9636 0.2480
RMSprop 16.1281 0.9742 0.1784
Adadelta 19.0121 0.9746 0.1838
Adam 17.9393 0.9694 0.2210
Adamax 17.5371 0.9740 0.1938

Table 1 shows the processing time, final accuracy and loss function values of these algorithms for
training the ANN. In this particular application, Adadelta has maximum accuracy, SGD with momentum
has the least training time but NAG seems to give the best overall performance. SGD has a significantly
poor accuracy because the training dataset, like most ANN datasets, is sparse and therefore remaining
optimizers are especially designed to cater this need.

The graphs in figure 1 show that all the optimizers except SGD give accuracy of greater than 95% but
some optimizers like Adam, Adagrad, RMSprop and Adamax give better accuracy and faster
convergence. However, the total processing time for these algorithms is also high with Adadelta being
the worst of the lot. Another important thing to note here is the stability of the algorithms. Adam,
RMSprop and Adadelta seem to have a lot of oscillations after convergence while other algorithms are

Tushar Agarwal (.270)
ECE 5759 Project

7

quite stable. Especially, Adagrad and Adamax are quite stable given that they are very similar to
RMSprop and Adam respectively.

Figure 1

The results of the test dataset were submitted to Kaggle.com as the part of the competition and
received >97% accuracy of prediction and a public leaderboard rank of 980. To depict the prediction
ability of the model for the purposes of this project, a random image is chosen from the test dataset and
given to the model. The images given and the predictions by the model are shown in figure 2.

It is important to note here that more recent and advanced version of ANNs called Convolutional Neural
Networks (CNNs) are especially designed for image base learning models like this one and must be the
preferred method of model creation in such tasks. This dataset was simple enough to be implemented
using a basic ANN and still give great prediction accuracy. The purpose here was to demonstrate
performance of various optimizers in conjunction to capabilities of ANNs in general.

Tushar Agarwal (.270)
ECE 5759 Project

8

Figure 2

Conclusion and Future Work

In terms of choosing the optimizer for neural network application which usually have sparse training
data, it can be concluded that any optimizer among RMSprop, Adam, Adadelta, Adamax and even NAG
can be used. For simpler applications like this one, NAG can give overall best performance accounting
for the low processing time for training also.

The results of this project are convincing enough to say that machine learning using ANNs provide the
ability to make a machine learn and identify almost any image. This project serves as a proof of concept
and can be developed into numerous useful applications. It can be used to build a hand-writing
recognition software for touch-screen devices or to build an optical character recognition system which
can make digital copies of books in a blink of an eye.

References

1. Wikipedia.org, Artificial Neural Networks. en.wikipedia.org/wiki/Artificial_neural_network
2. Ruder S., An overview of gradient descent optimization algorithms, 2016,

http://sebastianruder.com/optimizing-gradient-descent/index.html
3. Sutton R. S., Two problems with backpropagation and other steepest-descent learning

procedures for networks, 1986.
4. Qian N., On the momentum term in gradient descent learning algorithms. Neural networks: the

official journal of the International Neural Network Society, 12(1):145–151, 1999.
5. Nesterov Y., A method for unconstrained convex minimization problem with the rate of

convergence o(1/k2). Doklady ANSSSR (translated as Soviet.Math.Docl.), 269:543–547.
6. Bengio Y., Boulanger-Lewandowski N., Pascanu R., Advances in Optimizing Recurrent Networks.

2012.
7. Duchi J., Hazan E., Singer Y., Adaptive Subgradient Methods for Online Learning and Stochastic

Optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.
8. Zeiler M. D., ADADELTA: An Adaptive Learning Rate Method. arXiv preprint

arXiv:1212.5701, 2012.
9. Hinton G. et al., Neural Networks for Machine Learning, Lecture 6e,

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
10. Kingma D. P. and Ba J. L., Adam: a Method for Stochastic Optimization. International Conference

on Learning Representations, pages 1–13, 2015.

