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Inverse Problems

Forward model Y = Φθ(X) + Noise
Inverse problem Given Y estimate either X
or parameters denoted by θ in system

Examples

MRI, CT and other medical imaging mo-
des. Given Y Fourier measurements and
X illumination system, we estimate θ in
person

Recommender systems. Given Y the user
preferences and θ the factor models we
predict X the rankings on novel objects.

Φ is linear in most cases. Ill-posed due to insufficient measurements compared to signal
dimensions.
Solution 101 - invert the known operator using the ML estimation depending on noise
distribution
Better Solution Impose known conditions on the solution space to restrict the solution
space to Ω.

min
X∈Ω

Loss (X ,Y ; Φ) or min
θ∈Ω

Loss (θ,Y ;X ) .
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Solution

min
X∈Ω

Loss (X ,Y ; Φ) .

Some common assumptions are sparsity, low-rank, smoothness, band-limited. We focus on
the sparsity condition in this discussion. Under the Gaussian noise assumption, we use the
least squares loss with X ∈ DK , where DK is the set of all K -sparse vectors in N
dimensional space, Φ ∈ CM×N and Y ∈ CM

min
X∈DK

‖Y − ΦX‖2

Cardinality constraint

min
X∈DK

‖Y − ΦX‖2

subject to ‖x‖0 ≤ K , ‖x‖∞ ≤ 1.

Convex Relaxation

min
X∈DK

‖Y − ΦX‖2

subject to ‖x‖1 ≤ K , ‖x‖∞ ≤ 1.
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Tightest convex relaxation using Fenchel duality

The definition of the tightest convex relaxation h(x) of any function g(x),∀x ∈ Ω such
that h(x) ≤ g(x) and h(x) is convex. Fenchel dual of a function is given by
g∗(y) = supx〈x , y〉 − g(x)

Let g(x) = x0 and h(x) = |x | such
that |x | ≤ 1. It can be shown that It
can be verified that g∗(y) = h∗(y).
Therefore, g∗∗(z) = h(z). This
implies that the function h(.) is the
tightest convex function.
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Technical requirement - Restricted isometry

We define the restricted isometry property of a measurement operator Φ, for all X ∈ DK

(1− δs) ‖X‖2 ≤ ‖ΦX‖2 ≤ (1 + δs) ‖X‖2
.

In case of the convex relaxation approach the null-space of the measurement operator is
important. A bound on δ2K is required to ensure the K sparse solution to be unique
[Can08]1.
In case of the greedy methods for imposing the cardinality constraint, the matrix Φ∗Φ
should be close to an identity matrix. Therefore, a bound on δ3K is sufficient to bound the
residual error[BD08]2.

1Emmanuel Candes, The restricted isometry property and its implications for compressed sensing, Comptes Rendus
Mathematique, 2008

2Thomas Blumensath, and Mike E. Davies , Iterative Thresholding for Sparse Approximations, Journal of Fourier
Analysis and Applications,2008.
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Approaches

Unfolding the iterations of projected gradient methods [XWG+16]3[GL10]4

Auto-encoders [MPB15]5

3Bo Xin, Yizhou Wang, Wen Gao, David Wipf, and Baoyuan Wang, Maximal Sparsity with Deep Networks?, Advances
in Neural Information Processing Systems 29 (NIPS 2016)

4Karol Gregor, and Yann LeCun, Learning fast approximations of sparse coding, ICML’10 Proceedings of the 27th
International Conference on International Conference on Machine Learning

5Ali Mousavi , Ankit B. Patel ,and Richard G. Baraniuk, A deep learning approach to structured signal recovery 2015
53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)
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Solving optimization problems with constraints

Unconstrained problem Goal : minx f (x)
Solution : Each step makes a quadratic
approximation and minimize this surrogate

x t+1 = arg min
x

f (x t) + 〈∇x f (x t), x − x t〉

+
1

2µ

∥∥x − x t
∥∥2

x t+1 = x t − µ∇x f (x t)

Constrained problem

min
x∈C

f (x) = min
x

f (x) + Ic(x), (1)

where IC (x) =

{
0 x ∈ C,
∞ otherwise

.

x t+1 = ΠC
(
x t − µ∇x f (x t)

)
,

ΠC(z) = arg min
x∈C

‖x − z‖2
2 .
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Projected Gradient descent

Iterative hard thresholding

X(t+1) = arg min
X
‖Y − ΦX‖2 + λ ‖X‖0 − µ

∥∥∥Φ
(

X− X(t)
)∥∥∥2

+ µ
∥∥∥X− X(t)

∥∥∥2

X(t+1) = Hλ

((
I− µΦTΦ

)
X(t) + ΦTY

)
or

X(t+1) = Hλ

(
X(t) + µΦTRes(t)

)
where the residual is defined as Res(t) = Y − ΦX(t) = Y − ΦX(t−1) + Φ

(
X(t) − X(t−1)

)
.

Therefore, Res(t) = Res(t−1) + Φ
(
X(t) − X(t−1)

)
.

Hλ(z) =

{
0 |z | ≤ λ
z |z | > λ
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Convex relaxation

X(t+1) = arg min
X
‖Y − ΦX‖2 + λ ‖X‖1 + µ

∥∥∥X− X(t)
∥∥∥2

X(t+1) = Sλ
((

I− µΦTΦ
)

X(t) + ΦTY
)

or
X(t+1) = Sλ

(
X(t) + µΦTRes(t)

)
where the residual is defined as Res(t) = Res(t−1) + Φ

(
X(t) − X(t−1)

)
.

Sλ(z) =


0 |z | ≤ λ
λ− z z > λ

λ+ z z > λ
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General steps

X(t+1) = Ψ
(

SX(t) + WY
)

or
X(t+1) = Ψ

(
X(t) + W1Res

(t)
)

where the residual is defined as Res(t) = Res(t−1) + Φ
(
X(t) − X(t−1)

)
and Ψ is an

algorithm specific non-linear function.
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Basic representation of projected gradient step

X(t+1) = Ψ
(

SX(t) + WY
)

is unrolled over time. The common weights to all the layers are estimated from data.
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Overview of the paper

X(t+1) = Ψ
(

S(t)X(t) + W(t)Y
)

1 Provides a preliminary analysis of benefit of adapting weights in improving the RIP
constraint

2 Provides a method to learn the inverse map in the setting of correlated dictionary

3 Formulates the sparse recovery problem as a multi-label support recovery problem.
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Learning shared weights

X(t+1) = Ψ
(

SX(t) + WY
)

This update step solves an alternative objective function given by

min
X

1

2
XTWΦX− XTWY subject to ‖X‖ ≤ K

Let W = DΦTW̄W̄T. This paper proposes solving the optimization problem indirectly
using training samples

min
W̄,D

δ3K

(
W̄ΦD

)
(2)

Using training samples and adaptive weights, we can handle certain models of correlation in
the measurement matrix by using the weights to get some pre-conditioning.
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Learning shared weights - drawbacks

This projection operator is specific to sparse signal model. This method fails in more
structured models such as group sparsity, clustered sparsity, etc.

Detailed analysis is presented in [GEBS18]6that generalizes to structured models.

6R. Giryes, Y. C. Eldar, A. M. Bronstein and G. Sapiro, ”Tradeoffs Between Convergence Speed and Reconstruction
Accuracy in Inverse Problems,” in IEEE Transactions on Signal Processing, vol. 66, no. 7, pp. 1676-1690, April, 1 2018
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Learning iteration dependent weights

X(t+1) = Ψ
(

S(t)X(t) + W(t)Y
)

Two strategies are used to implement this learning strategy

Residual networks

Long-short term memory networks.
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Residual networks

Residual neural network learns a function
that decomposes as

H(x) = Ψ(F(x) + x)

This step is similar to an iteration in the
projected gradient descent method where Ψ
is the rectified linear functional.

X(t+1) = Ψ
(

X(t) + W1Res
(t)
)

is the most suited formulation to use with the
residual networks. This also enables to use
Residual from previous step rather than the
input itself as shown

Res(t) = Res(t−1) + Φ
(

X(t) − X(t−1)
)
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LSTM formulation

This formulation is discussed in detail in [HXIW17]7.

This formulation uses the re-weighted least squares formulation to solve the sparsity
constraint problem. This is similar to FOCUSS or SBL.

The correspondence between the gates in the LSTM and the components of the opti-
mization program are established. More of this will be discussed later.

7Hao He, Bo Xin, Satoshi Ikehata, and David Wipf, ”From Bayesian Sparsity to Gated Recurrent Nets,” Advances in
Neural Information Processing Systems (NIPS), 2017
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