
A Self-driving car simulation using Q-Learning
Tushar Agarwal (agarwal.270@osu.edu), Wenxiao Zhan (zhan.137@osu.edu)

Introduction

Creating intelligent machines has long been a human endeavor with a rich past as
well as present. Reinforcement learning is one major component of this endeavor. As
the name suggests, reinforcement learning refers to a reward based learning system
designed for a machine to teach it the correct behavior of acting in a specified environ-
ment. It has its roots in behaviorist psychology and can be simply thought of as the
reward based training routine usually followed while teaching pet animals like dogs.
Such a training requires a time-dependent modeling of the processes.

Figure 1: Reinforcement Learning Problem (Image from [1])

According to the classical and more theoretical approach , the environment is formu-
lated as a Markov decision process (MDP) whose solution usually requires Dynamic
Programming. In fact, many reinforcement learning algorithms also utilize dynamic
programming techniques suitable to solve MDPs. But, the main difference between
the classical methods and reinforcement learning algorithms is that the latter does not
assume knowledge of an exact mathematical model of the MDP and they target large
MDPs where exact methods become infeasible. Most practical applications are usually
of this scale and thus, reinforcement learning has proven to be absolutely crucial given
its high practical utility.
There are two key components that make reinforcement learning so powerful: the use
of samples to optimize performance and the use of function approximation to deal with
large environments. Some scenarios where it has been used are:

1. A model of the environment is known, but an analytic solution is not available.

2. Only a simulation model of the environment is available (the subject of simulation-
based optimization).

3. The only way to collect information about the environment is to interact with it
like the NASA’s Mars Rover.

The first two of these problems could be considered planning problems since some
form of model is available, but the last one is a genuine learning problem. However,
reinforcement learning converts both planning problems to machine learning problems
as well.

1

Theoretical Background

A reinforcement learning (RL) agent interacts with its environment in discrete time
steps. At each time t, the agent receives an observation ot, which typically includes
the reward rt. It then chooses an action at from the set of available actions, which
is subsequently sent to the environment. The environment moves to a new state st+1

and the reward rt+1 associated with the transition (st, at, st+1) is determined. Let the
set of all possible states be referred as S and the set of all possible actions as A. The
goal of a reinforcement learning agent usually is to maximize a cumulative reward.

Components

Important components of an RL agent are the policy, the value function and the model.

• The model predicts how the environment will behave next. It has 2 main sub-
components:-
The transition probability: P(s, a, s′) = P (st+1 = s′|st = s, at = a)
The Reward: r(s, a) = E[rt+1|st = s, at = a]

• The policy π defines the agents behavior and is a mapping from state st to action
at. It can be be deterministic or probabilistic.
Deterministic policy: at = π(st)
Probabilistic policy: π(a|s) = P (at = a|st = s)

• Value function is a prediction of the future reward. It tries to measure the
goodness or badness of states V (st) or state-action pairs q(st, at) to help make a
decision between available set of actions A at a given state.
State value function for a given policy π: Vπ(s) = Eπ[Gt|st = s]
State-action value function for a given policy π: Qπ(s, a) = Eπ[Gt|st = s, at = a]

where Gt = rt +
∑

i>t γ
i−tri is a measure of the cumulative reward. The term

γ ∈ [0, 1) is a discount factor used to represent the fact that the present reward
is more valuable than the future reward as the future is always uncertain. This
is a very practical assumption and has real life manifestations like time value of
money in finances. It also allows the cumulative reward to be finite in case of
infinite time horizon, i.e. when the agent takes actions forever.

Classical Methods

The classical methods to solve this problem rely on an underlying model of the interac-
tions of the agent with the environment. The formulation is typically based on an MDP
model of the environment which yield’s the famous Bellman Optimality Equation.

V∗(st) = max
at

[r(st, at) + γ
∑
st+1∈S

P(st, at, st+1)V∗(st+1)] (1)

π∗(st) = argmax
at

[r(st, at) + γ
∑
st+1∈S

P(st, at, st+1)V∗(st+1)] (2)

where V∗(st) and π∗(st) refers to the optimal value functions and optimal policy of
the state st at time t respectively. These equations are usually solved iteratively

2

using dynamic programming which reduces the complexity of the solution from O(mn)
to O(mn2). where m,n denote the dimensions of the state space and total no. of
time-steps respectively. These methods have their roots in optimal control theory
but recently, people have started referring them also as Model-Based RL. There is

a fundamental problem in using these methods for practical applications. We don’t
have transition probabilities available for most unknown or even known environments,
making these methods of limited practical use. This is where model-free methods come
to rescue.

Model-Free Methods

Model-Free methods are the ones with most wide practical applications. These meth-
ods do not require any underlying transition probabilities of agent states in the envi-
ronment. But they are not exactly model free as we still need the reward information
from the environment. Fortunately, some notion of reward is almost always available
or can be artificially generated based on any prior knowledge of appropriate behavior
of the agent in the specific environment.

The basic premise of Model-Free learning is instead of finding the estimates of tran-
sition probabilities, the value function itself is approximated by carrying out exper-
iments. One major problem is with the form of value function V∗(st). Even if it is
possible to approximate it, we will still need P(st, at, st+1) to evaluate optimal policy
at every time-step which are not available. So instead, a new value function is defined
known as the state-action value function Q∗(st, at) which assigns value of to each state
action pair instead of only the state itself.

Q(st, at) = r(st, at) + γ
∑
st+1∈S

P(st, at, st+1) max
at+1

[Q(st+1, at+1)]

⇒ Q(st, at) = E
st+1∈S

[r(st, at) + γmax
at+1

(Q(st+1, at+1))] (3)

This helps simplify the original formulation considerably because now:-

V∗(st) = max
at∈A

Q(st, at)

π∗(st) = argmax
at∈A

Q(st, at)

Looking at the definition of the new value functions, it is clear that the estimate

would be just the mean of the random variable Gt = rt +
∑

i>t γ
i−tri obtained after

experiments. So we approximate the true mean by the empirical mean. The change
that occurred with respect to the original state value function formulation V (st) is that
the E[Gt] is now conditioned on both st and at instead of just st. So, the empirical
estimates of Q(st, at) will form a 2-Dimensional array instead of 1-dimensional array
in case of V (st). Now, this 2-dimensional array will be hard to estimate accurately
for all possible (st, at) pairs as the dimensionality of state-space and/or action-space
may be large. But notice that it is not actually required to estimate all values. What
is finally required are the optimal values maxat∈AQ(st, at). So, all estimates are not
actually required. But before finding all the Q values, it is not possible to decide which
are the optimal ones. This results in the basic ’Chicken or Egg’ problem. One of the

3

solutions to this Q-value estimation problem is ε-greedy search which will be discussed
later in this section.

The task of estimating Q-values is broken down into 2 parts: Evaluation and strategic
Improvement.

Evaluation

There are two primary methods to estimate value functions:-

1. Monte Carlo (MC) Methods and

2. Temporal Difference (TD) Methods

Learning through Monte Carlo methods is the same approach as estimating the bias of
a coin by repeated tosses. Here, Q(s, a) = E[Gt|st = s, at = a] where Gt is the random
variable which is observed at the end of each episode. An episode is defined as the
complete duration over which the agent starts from source and reaches its destination.
Multiple complete episodes are run to find the required estimates.

An update rule is used to improve the estimates at the end of each episode. This
is the basic incremental mean rule described as follows. Let {Xj} be a sequence of
random variables. Then the mean of any k such random variables can be incrementally
updated as:-

µk =
1

k

k∑
j=1

Xj =
1

k
[Xk +

k−1∑
j=1

Xj] =
1

k
[Xk + (k − 1)µk−1] = µk−1 +

1

k
[Xk − µk−1]

Applying this rule to the problem at hand, the incremental update rule for Q-value
function becomes:-

Qn(st, at) = Qo(st, at) +
1

N(st, at)
(Gt −Qo(st, at)) (4)

where Qn(st, at) and Qo(st, at) denote new and old estimate of the Q-value at (st, at),
N(st, at) denotes total number of times agent passed through the (st, at) state-action
pair and Gt denotes the value obtained at the end of current episode.

Notice that this is the exact evaluation of Q(st, at). From here onward, several steps
will be taken to modify the eq. (4) to make it more conducive for calculations in
real-time.

First change that is made will be to use a variable α ∈ [0, 1) instead of 1
N(st,at)

and in

general α > 1
N(st,at)

. This is done to reduce and eventually remove the contribution of

very old estimates to Q(st, at) evaluation, as time progresses. This is a very practical
thing to do because very old values become meaningless due to the dynamic nature of
the agent-environment interaction.

Next, a change will be made to overcome one of the limitations of the Monte-Carlo
method. Notice that the way it is posed, an episode always needs to terminate to
obtain the values of Gt and make the updates using eq. (4). This may be a very slow

4

process or even impossible to do in cases of infinite time horizon or processes that do
not terminate. So, a modification needs to be to be done to make the updates online
instead of waiting till the end. This is where the temporal-difference methods are used.
The idea is simple, the random variable Gt is replaced by r(st, at) + γQo(st+1, at+1),
an estimate of Gt which is available at the very next time-step. This time-difference
based update exploits the commonly found Markovian property of the environments.
Thus, the update equation becomes:-

Qn(st, at) = Qo(st, at) + α[r(st, at) + γQo(st+1, at+1 −Qo(st, at)] (5)

Notice that this makes TD methods faster and more capable in markovian environ-
ments but they have inferior performance compared to MC methods in non-markovian
environments. In practice, it is possible to get the best of both worlds by using TD(λ)
methods which basically making an update after some λ amount of time-steps. These
are not discussed in detail here as they are irrelevant to the project but interested
readers are encouraged to refer to [2].

Improvement using Exploration-Exploitation

Finding all the Q-values may not be possible and they are not actually required too.
The most important values are the optimal ones. But due to the dilemma described
above, it is not possible to get one without the other. Thus, to solve this problem the
concept of Exploration-Exploitation is utilized via. the ε-greedy search method. This
tries to achieve the best of both worlds:- Exploration: Search for new action paths

through the state-space to reach the destination. Exploitation: Use the knowledge
from the past to improve the estimates of the best possible paths.

The ε-greedy search method is similar to the greedy search where the next action a
is decided based on the equation a = argmaxat Q(st, at). But, to explore new actions
which might be even better than the initially guessed best actions, sometimes (i.e.
with probability ε) the next action is decided randomly instead of a greedy decision.
Also, in cases when Q values at a given state are exactly same for multiple actions, a
decision is made randomly.

Though it looks simple, this idea of Exploration-Exploitation has proven to be very
effective in applications. In addition, it has been mathematically proven to eventually
converge to finding the optimal value functions [3].

Experiment

The Q-learning algorithm is applied to make a self-driving car agent learn the decisions
to be made. The environment and simulator were taken from the smartcab project
in the Udacity’s Github page [4] and have been used as is. An agent class has been
implemented that utilizes the Q-learning algorithm and learns to make appropriate
decisions in this simulated environment. The simulator and hence the entire project is
built on python 2.7 and the simulator utilizes the pygame library. The simulator grid-
world comprises of straight single lane roads with traffic signals at every intersection
and several other cars (traffic).

5

Driving agent receives numeric (scalar) rewards depending on how ’acceptable’ was
the action. This reward logic is coded in the simulator and is based on U.S. right-
of-way rules. The objective is to construct an optimized Q-Learning driving agent
that will navigate a Smartcab through its environment towards a goal while following
these rules. Since the Smartcab is expected to drive passengers from one location to
another, the driving agent will be evaluated on two very important metrics: Safety and
Reliability. A driving agent that gets the Smartcab to its destination while running
red lights or narrowly avoiding accidents would be considered unsafe. Similarly, a
driving agent that frequently fails to reach the destination in time would be considered
unreliable. Maximizing the driving agent’s safety and reliability is the only way to
ensure that Smartcabs have a permanent place in the transportation industry. Safety
and Reliability are measured using a letter-grade system as follows:

Figure 2: Description of performance grades (Image from ’smartcab.ipynb’ in [4])

There is a visualization of the simulation available which has been disabled by default.
This is done to make the simulation run faster and to ensure the simulation runs on
any machine having Python (2.7) without the need of installing pygame library and
other dependencies of the simulation. Optionally, the visualizations can be enabled by
setting the ’display’ flag of the ’Simulator’ object to True. The white vehicle in the
visual, is the Smartcab.

The first step is to define the valid actions the agent can take. In this case, a valid
action is one of None ⇒ (do nothing), ’left’ ⇒ (turn left), ’right’ ⇒ (turn right) or
’forward’ ⇒ (go forward). The set of valid actions is referred to as A.

The next step is to decide which inputs are the most essential to include in the state
of the agent. This is a critical step and is similar to feature-engineering in supervised
learning. If all the inputs are naively included in the state, the state-space will be
so large that the learnt Q-values will always be sparse and it would be practically
impossible as well as inefficient to make the agent learn. The driving agent receives
the following data from the environment:

1. ’waypoint’⇒ The direction the Smartcab should drive leading to the destination,
relative to the Smartcab’s current position in the grid-world.

6

2. ’inputs’ ⇒ The sensor data from the Smartcab. It includes:-

• ’light’ ⇒ The color of the traffic signal.

• ’left’⇒ The intended direction of travel for a vehicle to the Smartcab’s left.
Returns None if no vehicle is present.

• ’right’ ⇒ The intended direction of travel for a vehicle to the Smartcab’s
right. Returns None if no vehicle is present.

• ’oncoming’ ⇒ The intended direction of travel for a vehicle across the in-
tersection from the Smartcab. Returns None if no vehicle is present.

3. ’deadline’ ⇒ The number of time-steps remaining for the Smartcab to reach the
destination.

Assuming traffic is following regulations, there isn’t a need of information about the
vehicles on the left and right because the traffic signals take care of it. Hence, out
of these inputs, the inputs chosen to be the part of the state are ’waypoint’, ’light’
and ’oncoming’. ’deadline’ is right now neglected because in authors’ opinion, safety
is more of a concern primarily. If the agent receives decent reliability grade (’A’ or
higher) without including ’deadline’ in the state, then this input will also be ignored
in favor of smaller state-space, less storage requirements and faster performance.

The Q-table is formed as a python dictionary. Each state is a key of the dictionary, and
each value will then be another python dictionary that holds the action and Q-value.
Here is an example:-

{ ’state-1’: ’action-1’ : Qvalue-1,’action-2’ : Qvalue-2, ...,
’state-2’: ’action-1’ : Qvalue-1,’action-2’ : Qvalue-2, ...,
... }

Varying parameters α and ε

It is necessary to adjust learning parameters so that the driving agent learns both
safety and efficiency and converges close to true optimal values. Typically this step
requires a lot of trial and error, as some settings will invariably make the learning
worse. Another thing to keep in mind is the act of learning itself and the time that
this takes. In theory, the agent is allowed to learn for an incredibly long amount
of time. However, another goal of Q-Learning is to transition from experimenting
with unlearned behavior to acting on learned behavior. For example, always allowing
the agent to perform a random action during training (if ε = 1 and never decays)
will certainly make it learn, but never let it act. Hence, as the number of trials
increases, ε should decrease towards 0. Also, it is desired to slowly decay the learning
rate α towards 0 to converge Q-values to optimum values, otherwise these will keep
oscillating. The agent will be tested on what it has learned after ε has gone below a
certain ’threshold’ (specified as 0.05), i.e. the end of training phase is decided by value
of ε.

Designing these decay functions took some time and in the end, the authors came up
with the following functions:-

7

εt = fε(t) =

{
(0.5/(1.2t)) + 0.5 t <= expriter

min{(0.449|cos((90t/niter)
o)|) + 0.051), k/(t+ 1)2} t > expriter

αt = fα(t) = min{α,
√
k/(t+ 1)}

Where α = 0.5 is a constant, niter is the no. of training iterations desired (niter = 300),
expriter = bniter/10c and k = tolerance× (n2

iter) are derived constants.

Hence, a total of 300 training trials and 50 testing trials are performed.

Q-Learning Algorithm

Building upon the theoretical background in the previous section, the final Q-learning
algorithm used is described below as Algorithm 1.

t = 0;
while t <= maximum no. of time-steps do

αt = fα(t);
εt = fε(t);
Get all the {available inputs} from environment.;
Build the state st ⊂ {available inputs}.;
if st /∈ Q-table then

create an entry Q(st, a) = 0 ∀ a ∈ A;
end
if ∃ st−1 then

Qn(st−1, at−1) = Qo(st−1, at−1)+αt[r(st−1, at−1)+γmax
a∈A

(Qo(st, a))−Qo(st−1, at−1)];

end
p = uniform randomly from [0, 1);
if p < εt then

at = uniform randomly from {x : x = Qo(st, a) ∀ a ∈ A};
else

at = uniform randomly from {x : x = argmaxa∈AQo(st, a)};
end
Receive reward r(st, at) from the environment simulator.;
st−1 = st;
at−1 = at;
r(st−1, at−1) = r(st, at);
t = t+ 1;

end
Algorithm 1: Q-learning algorithm

8

Figure 3: Simulator visualization using pygame

9

(a) Training and Testing Results during learning phase

(b) Testing Results after learning

Figure 4: Results of the simulation

10

Results

The experiment is run on a windows 10 PC with Intel Xeon CPU E5-2623 (@ 3 GHz)
and RAM of 32 GB. It takes less than 3 minutes to complete. The results are produced
using a separate ’visuals.py’ module. They are shown in figure 4a. All the data shown
is the 10-trial rolling average. It can be clearly seen that, during the training phase,
all bad actions including violations and accidents gradually drop down towards zero.
Although there are some violations in the last trial, there are no accidents whatsoever.
The relative frequency here refers to the frequency relative to total number of actions
taken during that trial. The 10-trial rolling average reward increases from -4 to 2.
Similarly, even the reliability goes up to 100%. During the testing in learning phase,
the agent receives the best possible grade of ’A+’ for safety which was the primary
target of the project. Also, the reliability grade is ’A’ which is satisfactory. In fact, in
only 2 out of 50 testing trials, the agent wasn’t able to reach the destination within
allotted time giving 96% test reliability. The decay of parameters α and ε according
to the designed decay functions, can also be seen.

After learning phase is finished, the learning of the agent is disabled and the simulation
is ran again to test the performance. These testing results are shown in figure 4b. Given
the simplicity of the algorithm and the model itself, these results are pretty convincing
for justifying practical application of Q-learning in general RL problems. The rules
learnt by the agent can be seen in the Q-table python dictionary shown in Appendix
listing (1) and the code for this experiment is in listing (2).

Conclusion

This project was an attempt to make a basic self-driving car agent using Q-learning
which is a Temporal Difference based learning method. The algorithm was understood
and implemented successfully in python (2.7). The important features that form the
state of the agent at any time ’t’, were carefully chosen from all the inputs received.
The model was learnt using only 3 features as state , viz., the next way-point, the
traffic signal and the direction of travel of oncoming traffic. As a result, the learning
was very fast and took around 3 minutes with 300 iterations. The performance of
the agent, obtained from testing trials was given grade ’A+’ for Safety and ’A’ for
reliability. In fact, the reliability was 96% with agent failing to reach destination on
time in only 1 trial out of total 50. Thus, it can be concluded that Q-learning is a very
simple, elegant and effective way of learning about the optimum behavior of an agent
in an unknown environment.

Future Work

This project introduced a very important RL algorithm, Q-learning. There is a lot
of active research going on in this domain, especially in regard to storing state-action
pair values as function approximations. An application based effort is proposed as
follows.

11

MLP training agent

The authors made an innovative effort to use the Q-learning algorithm to train an
RL agent for tweaking hyper-parameters of a fully connected Multilayer Perceptron.
The rewards were taken as the negative of validation loss. It was assumed that the
perceptron network would have a typical trapezoidal shape with the state-space defined
as S = { no. of neurons in first hidden layer (length in), no. of layers (depth), no. of
neurons in last hidden layer (length out) }. The action space was defined as A = {
increase length in by 20, decrease length in by 20, increase depth by 1, decrease depth
by 1, increase length out by 2, decrease length out by 2 }. Although there can be more
elegant ways of defining the action space and even the state-space, the authors tried
to keep it simple in the beginning efforts. The agent was trained for 300 iterations
with similar parameters as the smartcab agent described in this project. A part of the
results was good where the agent seemed to learn that the action of increasing depth
was preferred in many scenarios, which we know to be true in the field. But, the results
are below satisfactory at this point. There is a need of deeper and better understanding
of other RL techniques and modifications to the initial problem definition. Authors
will work in this direction in future.

References

[1] Daniel, C. et al. ”Reinforcement Learning for Movement Skills,” Intelligent
Autonomous Systems, Technische Universität Darmstadt,
http://www.ausy.tu-darmstadt.de/uploads/Research/Research/ReinforcementLearning.pdf

[2] Silver, D., UCL Course on RL,
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching

[3] Sutton, R.S. and Barto, A.G., “Reinforcement Learning: An Introduction,” The
MIT Press, Second Edition, April 2018.

[4] Udacity.com, Project: Train a Smartcab How to Drive,
https://github.com/udacity/machine-learning/tree/master/projects/smartcab ,
January 2018.

12

Appendix

Listing 1: Q-Table

/---

| State-action rewards from Q-Learning

\---

(’left’, ’red’, ’right’)

-- None : 3.54

-- forward : -10.51

-- right : 0.44

-- left : -36.43

(’forward’, ’red’, ’forward’)

-- None : 3.72

-- forward : -8.35

-- right : -3.52

-- left : -24.48

(’forward’, ’green’, ’right’)

-- None : -3.35

-- forward : 3.46

-- right : 2.19

-- left : -17.70

(’right’, ’red’, ’forward’)

-- None : 2.45

-- forward : -24.24

-- right : -5.55

-- left : -15.72

(’forward’, ’red’, None)

-- None : 3.66

-- forward : -8.53

-- right : 2.27

-- left : -17.76

(’right’, ’green’, None)

-- None : -3.53

-- forward : 2.29

-- right : 3.46

-- left : 2.81

(’right’, ’red’, ’right’)

-- None : 2.26

-- forward : -8.22

-- right : -2.27

13

-- left : -38.65

(’left’, ’red’, None)

-- None : 3.68

-- forward : -16.12

-- right : 2.17

-- left : -10.35

(’right’, ’green’, ’left’)

-- None : -3.19

-- forward : 2.02

-- right : 3.21

-- left : 1.50

(’forward’, ’red’, ’left’)

-- None : 3.68

-- forward : -9.33

-- right : -1.45

-- left : -15.50

(’left’, ’red’, ’left’)

-- None : 3.45

-- forward : -11.19

-- right : -1.17

-- left : -12.12

(’forward’, ’green’, ’forward’)

-- None : -3.40

-- forward : 3.85

-- right : 2.43

-- left : -17.92

(’left’, ’green’, ’left’)

-- None : -3.69

-- forward : 2.54

-- right : 2.87

-- left : 3.89

(’left’, ’green’, ’forward’)

-- None : -3.52

-- forward : 2.97

-- right : 1.81

-- left : -18.38

(’left’, ’green’, ’right’)

-- None : -3.94

-- forward : 2.69

-- right : 1.72

14

-- left : -17.31

(’right’, ’green’, ’forward’)

-- None : -3.02

-- forward : 2.19

-- right : 3.31

-- left : -18.56

(’right’, ’red’, None)

-- None : 2.00

-- forward : -11.41

-- right : 0.67

-- left : -12.23

(’forward’, ’green’, ’left’)

-- None : -3.40

-- forward : 3.50

-- right : 2.20

-- left : 2.61

(’right’, ’green’, ’right’)

-- None : -3.14

-- forward : 1.88

-- right : 3.94

-- left : -13.60

(’right’, ’red’, ’left’)

-- None : 2.66

-- forward : -18.65

-- right : 0.38

-- left : -22.52

(’left’, ’green’, None)

-- None : -3.64

-- forward : 2.06

-- right : 2.48

-- left : 3.70

(’left’, ’red’, ’forward’)

-- None : 3.05

-- forward : -8.44

-- right : -1.13

-- left : -20.02

(’forward’, ’red’, ’right’)

-- None : 3.83

-- forward : -23.31

-- right : -8.19

15

-- left : -37.67

(’forward’, ’green’, None)

-- None : -2.67

-- forward : 3.15

-- right : 2.68

-- left : 2.36

Listing 2: Python Code

import random

from environment import Agent, Environment

from planner import RoutePlanner

from simulator import Simulator

import numpy as np

import visuals as vs

class LearningAgent(Agent):

""" An agent that learns to drive in the Smartcab world.

This is the object you will be modifying. """

def __init__(self, env, learning=False, epsilon=1.0, alpha=0.5):

super(LearningAgent, self).__init__(env) # Set the agent in the

↪→ evironment

self.planner = RoutePlanner(self.env, self) # Create a route

↪→ planner

self.valid_actions = self.env.valid_actions # The set of valid

↪→ actions

Set parameters of the learning agent

self.learning = learning # Whether the agent is expected to

↪→ learn

self.Q = dict() # Create a Q-table which will be a dictionary

↪→ of tuples

self.epsilon = epsilon # Random exploration factor

self.alpha = alpha # Learning factor

self.t=0 #counter for Q-table

def reset(self, destination=None, testing=False):

""" The reset function is called at the beginning of each

↪→ trial.

’testing’ is set to True if testing trials are being used

once training trials have completed. """

Select the destination as the new location to route to

self.planner.route_to(destination)

Update epsilon using a decay function

16

Update additional class parameters as needed

If ’testing’ is True, set epsilon and alpha to 0

n_iter=300 #>=20

expr_iter=n_iter//10

k=0.05*(n_iter**2)

self.t=self.t+1;

self.epsilon=int(self.t<=expr_iter)*((0.5/(1.2**self.t))+0.5)+\

int(self.t>expr_iter)*np.min([(0.449*np.abs(np.cos(np.deg2rad(

↪→ self.t*90/n_iter)))+0.051),k/(self.t+1)**2]) # update

↪→ epsilon

self.alpha=np.min([self.alpha,(k**0.5)/(self.t+1)])

if testing:

self.epsilon=0;self.alpha=0

return None

def build_state(self):

""" The build_state function is called when the agent requests

↪→ data from the

environment. The next waypoint, the intersection inputs,

↪→ and the deadline

are all features available to the agent. """

Collect data about the environment

waypoint = self.planner.next_waypoint() # The next waypoint

inputs = self.env.sense(self) # Visual input - intersection

↪→ light and traffic

deadline = self.env.get_deadline(self) # Remaining deadline

Because the aim of this project is to demonstrate

↪→ Reinforcement Learning, we have not done

aggressive feature engineering. Instead, the aim was to

↪→ adjust epsilon and alpha,

and thus learn about the balance between exploration and

↪→ exploitation.

With the hand-engineered features, this learning process may

↪→ get entirely negated.

Set ’state’ as a tuple of relevant data for the agent

state = (waypoint,inputs[’light’],inputs[’oncoming’])

return state

def get_maxQ(self, state):

""" The get_maxQ function is called when the agent is asked to

17

↪→ find the

maximum Q-value of all actions based on the ’state’ the

↪→ smartcab is in. """

Calculate the maximum Q-value of all actions for a given

↪→ state

maxQ = np.max(self.Q[str(state)].values())

return maxQ

def createQ(self, state):

""" The createQ function is called when a state is generated

↪→ by the agent. """

In learning phase, check if the ’state’ is not in the Q-

↪→ table

If it is not, create a new dictionary for that state

Then, for each action available, set the initial Q-value to

↪→ 0.0

if str(state) not in self.Q:

self.Q[str(state)]={k:v for (k,v) in zip(self.valid_actions,

↪→ np.zeros(len(self.valid_actions)))}

return

def choose_action(self, state):

""" epsilon greedy: The choose_action function is called when

↪→ the agent is asked to choose

which action to take, based on the ’state’ the smartcab is

↪→ in. """

Set the agent state and default action

self.state = state

self.next_waypoint = self.planner.next_waypoint()

When learning, choose a random action with ’epsilon’

↪→ probability

Otherwise, choose an action with the highest Q-value for the

↪→ current state

When choosing an action with highest Q-value selection is

↪→ made randomly between actions that "tie".

all_QVs=np.array(self.Q[str(state)].values()) #extract all QVs

all_keys=np.array(self.Q[str(state)].keys())

rand_no=random.uniform(0,1) #get a random no. between [0,1)

if rand_no<self.epsilon: #event with epsilon probability

18

apt_acts=all_keys

else:

apt_acts=[all_keys[i] for i in range(len(all_QVs))\

if all_QVs[i]==self.get_maxQ(state)] #form list of

↪→ apt actions

act_idx=random.randint(0,len(apt_acts)-1) #choose random no.

action = apt_acts[act_idx]

return action

def learn(self, state, action, reward,state_new):

""" The learn function is called after the agent completes an

↪→ action and

receives a reward. This function does not consider future

↪→ rewards

when conducting learning. """

When learning, implement the value iteration update rule

gamma=0.5

Qnew_opt=self.get_maxQ(state_new)

Q_0=self.Q[str(state)][action]

Q_1=Q_0+self.alpha*(reward + gamma*Qnew_opt-Q_0) # update rule

self.Q[str(state)][action]=Q_1

return

def update(self):

""" The update function is called when a time step is

↪→ completed in the

environment for a given trial. This function will build the

↪→ agent

state, choose an action, receive a reward, and learn if

↪→ enabled. """

state = self.build_state() # Get current state

self.createQ(state) # Create ’state’ in Q-table

if hasattr(self, ’state_old’):

self.learn(self.state_old,self.action_old,self.reward_old,

↪→ state) # Q-learn

action = self.choose_action(state) # Choose an action using eps

↪→ -greedy

reward = self.env.act(self, action) # Receive a reward

save values to Q learn in next time-step

self.state_old=state

self.reward_old=reward

19

self.action_old=action

return

In[Training phase]

""" Driving module for running the simulation.

Press ESC to close the simulation, or [SPACE] to pause the

↪→ simulation. """

Create the environment

Flags:

verbose - set to True to display additional output from the

↪→ simulation

num_dummies - discrete number of dummy agents in the environment,

↪→ default is 100

grid_size - discrete number of intersections (columns, rows),

↪→ default is (8, 6)

env = Environment(verbose=False)

Create the driving agent object

agent = env.create_agent(LearningAgent,learning=True,alpha=0.5,epsilon

↪→ =1)

Follow the driving agent

Flags:

enforce_deadline - set to True to enforce a deadline metric

env.set_primary_agent(agent)

env.enforce_deadline=True

Create the simulation

Flags:

update_delay - continuous time (in seconds) between actions,

↪→ default is 2.0 seconds

display - set to False to disable the GUI if PyGame is enabled

log_metrics - set to True to log trial and simulation results to /

↪→ logs

optimized - set to True to change the default log file name

sim = Simulator(env,update_delay=0.01, log_metrics=True,display=False,

↪→ optimized=True)

Run the simulator

Flags:

tolerance - epsilon tolerance before beginning testing, default is

↪→ 0.05

n_test - discrete number of testing trials to perform, default is 0

20

sim.run(n_test=50,tolerance=0.05)

vs.plot_trials(’sim_improved-learning.csv’) #plot_results

In[Testing phase]

#Extra testing

agent.learning=False #stop learning

sim_test = Simulator(env,update_delay=0.01, log_metrics=True,display=

↪→ False,optimized=True)

sim_test.run(n_test=20)

vs.plot_trials(’sim_no-learning.csv’)

21

