One Network to Solve Them All

Solving Linear Inverse Problems
using Deep Projection Models



Image Processing Problems

* Image inpainting e Super resolution

input input

reconstruction
output

reconstruction
output




Linear Inverse Problems

* The goal is to reconstruct an image x € R? from a set of measurements y € R™
of the form
y=A4Ax+n

where A € R™*% js the measurement operator and n € R™ is the noise.

* For example;
* Image inpainting
* Super resolution

A is a pixelwise mask
A is a downsampling operation

* Linear inverse problems are generally underdetermined
e Less equations than unkowns, i.e., m < d
* A has a null-space — infinite number of solutions

e How to find the «true» solutions?



Solving Linear Inverse Problems

* Using hand-designed signal priors
* Regularizing the problem using hand-designed signal priors in a penalty form

1
min > [ly — Ax|lz + ¢ (x)

where ¢: R? — R is the signal prior and 1 > 0 is the weighting term

 Signal priors constraining sparsity is widely studied
¢(x) = [|[Wx||;
where W is a linear operation that produces sparse features from input signal
* For images, W is usually wavelet transformation

* {1 norm is used
* Forms a convex optimization problem, hence, global optimality is possible
* Under certain assumptions, there exist many theoretical guarantees



Solving Linear Inverse Problems

* Using deep neural networks

* Given a linear operator A and a dataset M = {xq, x5, ..., X,,} the pairs
{(x;, Ax;)}-, can be used to learn an inverse mapping f ~ A~! by

minimazing the distance between x; and f (Ax;), even when A4 is
underdetermined
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Problems with these solution methods

* Using hand-designed signal priors
* Priors are usually too generic to recover the signal of interest
* One can easily generate noise signals that have sparse wavelet coefficients

* Using deep neural networks
* End-to-end mapping
* Application specific
* Even if the problems change slightly, the mapping functions (neural nets)
need to be retrained

* One strategy is to use deep neural networks to learn the signal priors
from the given dataset



Proposed Solution

e Based on alternating direction method of multipliers (ADMM)

* ADMM typically separates a complicated objective into several simpler ones
by variable splitting, i.e.,

1
min - ly — Az||3 + A¢p(x)
s.t. x=12

which is equivalent to the original problem
* The scaled form of the augmented Lagrangian of this problem

1 p
L(x,zu) =2 lly — Az||5 + 19 (x) +5 llx —z+ul|5

where p > 0 is the penalty parameter of the constraint x = zand u =

© <



ADMM Updates

* Alternatively optimizing L(x, z, u) over x, Z and u, ADMM algorithm yields

2
x5« arg min g ‘X —z% +u™|| + N op(x)
X 2
(k+1) L e Pkt )]
Z ¢ argmin ly Az||2—|—2 X z+u
Z 2
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» Update of z is a least squares problem and can be solved efficiently
» Update of x is in the form of a proximal operator of signal prior ¢p(x) with
penalty ©/,, denoted as prox  » (v), where v = z(F) — 4 (F)
A
* The signal prior ¢p(x) and the linear operator A is seperated

* This separation enables the learning of signal priors via deep neural networks



Learning a Proximal Operator

x**1) « prox , p (v)
P

* The signal prior ¢ (x) only appears in the form of a proximal operator

* No need to explicitly learn the signal prior and solve the proximal
operator for updating x

* Directly learn the proximal operator P such that

x(k'l'l) — :P(v) — :P(Z(k) — u(k))



How to learn P

* Let X represent the set of all natural images, i.e., solution space
* The best signal prior is the indicator function of X, denoted by I

* The corresponding proximal operator is

prox;, , (v)
* However, we do not have I in practice, hence, cannot evaluate prox;, , (v)
* Thus, train a classifier D to learn Iy

* Based on the learned classifier D, learn a projection function P that maps a signal v
to the set defined by the classifier



Illustration of classifier D and projection P
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Training the networks

* Adversarial learning
e P is the generative network
* D is the discriminative network
* The projector network P is trained to minimize

et
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arg min

* Thus, P aims to fail the classifier D by generating more natural like images
* As the projector P improves, D is updated to tighten its decision boundary



Results
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Robustness to variations on 4 and noise
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