One Network to Solve Them All

Solving Linear Inverse Problems using Deep Projection Models

Image Processing Problems

Image inpainting

Super resolution

input

input

reconstruction output

reconstruction output

Linear Inverse Problems

• The goal is to reconstruct an image $x \in \mathbf{R}^d$ from a set of measurements $y \in \mathbf{R}^m$ of the form

$$y = Ax + n$$

where $A \in \mathbb{R}^{m \times d}$ is the measurement operator and $n \in \mathbb{R}^m$ is the noise.

- For example;
 - Image inpainting \longrightarrow A is a pixelwise mask
 - Super resolution \longrightarrow A is a downsampling operation
- Linear inverse problems are generally underdetermined
 - Less equations than unknowns, i.e., m < d
 - A has a null-space \longrightarrow infinite number of solutions
- How to find the «true» solutions?

Solving Linear Inverse Problems

- Using hand-designed signal priors
 - Regularizing the problem using hand-designed signal priors in a penalty form

$$\min_{x} \frac{1}{2} \| y - Ax \|_{2}^{2} + \lambda \phi(x)$$

where $\phi \colon \mathbf{R}^d \to \mathbf{R}$ is the signal prior and $\lambda \ge 0$ is the weighting term

Signal priors constraining sparsity is widely studied

$$\phi(x) = \|Wx\|_1$$

where W is a linear operation that produces sparse features from input signal

- For images, W is usually wavelet transformation
- ℓ_1 norm is used
 - Forms a convex optimization problem, hence, global optimality is possible
 - Under certain assumptions, there exist many theoretical guarantees

Solving Linear Inverse Problems

- Using deep neural networks
 - Given a linear operator A and a dataset $\mathcal{M} = \{x_1, x_2, ..., x_n\}$ the pairs $\{(x_i, Ax_i)\}_{i=1}^n$ can be used to learn an inverse mapping $f \approx A^{-1}$ by minimazing the distance between x_i and $f(Ax_i)$, even when A is underdetermined

Problems with these solution methods

- Using hand-designed signal priors
 - Priors are usually too generic to recover the signal of interest
 - One can easily generate noise signals that have sparse wavelet coefficients
- Using deep neural networks
 - End-to-end mapping
 - Application specific
 - Even if the problems change slightly, the mapping functions (neural nets) need to be retrained
- One strategy is to use deep neural networks to learn the signal priors from the given dataset

Proposed Solution

- Based on alternating direction method of multipliers (ADMM)
 - ADMM typically separates a complicated objective into several simpler ones by variable splitting, i.e.,

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_{2}^{2} + \lambda \phi(\mathbf{x})$$
s. t. $\mathbf{x} = \mathbf{z}$

which is equivalent to the original problem

• The scaled form of the augmented Lagrangian of this problem

$$L(x, z, u) = \frac{1}{2} \|y - Az\|_{2}^{2} + \lambda \phi(x) + \frac{\rho}{2} \|x - z + u\|_{2}^{2}$$

where $\rho > 0$ is the penalty parameter of the constraint x = z and $u = \frac{y}{\rho}$

ADMM Updates

• Alternatively optimizing L(x, z, u) over x, z and u, ADMM algorithm yields

$$\mathbf{x}^{(k+1)} \leftarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \frac{\rho}{2} \left\| \mathbf{x} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)} \right\|_{2}^{2} + \lambda \phi(\mathbf{x})$$

$$\mathbf{z}^{(k+1)} \leftarrow \underset{\mathbf{z}}{\operatorname{arg\,min}} \frac{1}{2} \left\| \mathbf{y} - A\mathbf{z} \right\|_{2}^{2} + \frac{\rho}{2} \left\| \mathbf{x}^{(k+1)} - \mathbf{z} + \mathbf{u}^{(k)} \right\|_{2}^{2}$$

$$\mathbf{u}^{(k+1)} \leftarrow \mathbf{u}^{(k)} + \mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)}.$$

- ullet Update of $oldsymbol{z}$ is a least squares problem and can be solved efficiently
- Update of x is in the form of a proximal operator of signal prior $\phi(x)$ with penalty $^{\rho}/_{\lambda}$, denoted as $\mathbf{prox}_{\phi,\frac{\rho}{\lambda}}(v)$, where $v=z^{(k)}-u^{(k)}$
- The signal prior $\phi(x)$ and the linear operator A is seperated
- This separation enables the learning of signal priors via deep neural networks

Learning a Proximal Operator

$$\boldsymbol{x}^{(k+1)} \leftarrow \mathbf{prox}_{\phi, \frac{\rho}{\lambda}}(\boldsymbol{v})$$

- The signal prior $\phi(x)$ only appears in the form of a proximal operator
- ullet No need to explicitly learn the signal prior and solve the proximal operator for updating $oldsymbol{x}$
- Directly learn the proximal operator ${\mathcal P}$ such that

$$\boldsymbol{x}^{(k+1)} \leftarrow \mathcal{P}(\boldsymbol{v}) = \mathcal{P}(\boldsymbol{z}^{(k)} - \boldsymbol{u}^{(k)})$$

How to learn ${\mathcal P}$

- Let $\mathcal X$ represent the set of all natural images, i.e., solution space
- The best signal prior is the indicator function of \mathcal{X} , denoted by $I_{\mathcal{X}}$
- The corresponding proximal operator is

$$\mathbf{prox}_{I_{\chi},\rho}\left(\boldsymbol{v}\right)$$

- However, we do not have $I_{\mathcal{X}}$ in practice, hence, cannot evaluate $\mathbf{prox}_{I_{\mathcal{X}},\rho}\left(\boldsymbol{v}\right)$
- Thus, train a classifier ${\mathcal D}$ to learn $I_{\mathcal X}$
- Based on the learned classifier \mathcal{D} , learn a projection function \mathcal{P} that maps a signal $m{v}$ to the set defined by the classifier

Illustration of classifier ${\mathcal D}$ and projection ${\mathcal P}$

Training the networks

- Adversarial learning
 - \mathcal{P} is the generative network
 - \mathcal{D} is the discriminative network
 - The projector network ${\mathcal P}$ is trained to minimize

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} \frac{\rho}{2} \left\| \mathbf{x} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)} \right\|_{2}^{2} + \lambda \, \phi(\mathbf{x})$$

- Thus, ${\mathcal P}$ aims to fail the classifier ${\mathcal D}$ by generating more natural like images
- As the projector $\mathcal P$ improves, $\mathcal D$ is updated to tighten its decision boundary

Results

Results

Robustness to variations on **A** and noise

